



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年浙江省金华市高职单招数学自考预测试题十二(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.设lg2=m,lg3=n,则lg12可表示为()
A.m²nB.2m+nC.2m/nD.mn²
2.若不等式2x²+2ax+b<0的解集是{x|-1<x
A.-5B.1C.2D.3
3.直线y=x+1与圆x²+y²=1的位置关系是()
A.相切B.相交但直线不过圆心C.直线过圆心D.相离
4.不等式|x²-2|<2的解集是()
A.(-1,1)B.(-2,2)C.(-1,0)∪(0,1)D.(-2,0)∪(0,2)
5.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()
A.-1B.1C.3D.7
6.双曲线x²/10+y²/2=1的焦距为()
A.2√2B.2√3C.4√2D.4√3
7.不等式(x-1)(3x+2)解集为()
A.{x<-2/3或x>1}B.{-2/3<x<="x<=1}"d.{-1<x
8.已知α∈(Π/2,Π),cos(Π-α)=√3/2,则tanα等于()
A.-√3/3B.√3/3C.-√3D.√3
9.不等式x²-x-2≤0的解集是()
A.(-1,2)B.(-2,1)C.(-2,2)D.[-1,2]
10.已知y=f(x)是奇函数,f(2)=5,则f(-2)=()
A.0B.5C.-5D.无法判断
二、填空题(4题)11.f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f(2x-3)的解集是________。
12.直线x+2y+1=0被圆(x一2)²+(y-1)²=25所截得的弦长为______。
13.已知向量a=(3,4),b=(5,12),a与b夹角的余弦值为________。
14.圆M:x²+4x+y²=0上的点到直l:y=2x-1的最短距离为________。
三、计算题(2题)15.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
16.求证sin²α+sin²β−sin²αsin²β+cos²αcos2²β=1;
参考答案
1.B
2.A
3.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.
4.D[解析]讲解:绝对值不等式的求解,-2<x²-2<2,故0<x²
5.B
6.D由双曲方程可知:a²=10,b²=2,所以c²=12,c=2√3,焦距为2c=4√3.考点:双曲线性质.
7.B[解析]讲解:一元二次不等式的考察,不等式小于0,解集取两根之间无等号,答案选B
8.A
9.D
10.C依题意,y=f(x)为奇函数,∵f(2)=5,∴f(-2)=-f(2)=-5,故选C.考点:函数的奇偶性应用.
11.(3/2,3)
12.4√5
13.63/65
14.√5-2
15.解:设原来三个数为a-d,a,a+d,则(a-d)+a+(a+d)=9所以3a=9,a=3因为三个数为3-d,3,3+d又因为3-d,3,7+d成等比数列所以(3-d)(7+d)=3²所以d=2或d=-6①当d=2时,原来这三个数为1,3,5②当d=-6时,原来三个数为9,3,-3
16.证明:因为sin²α+sin²β−sin²αsin²β+cos²αcos²β=(sin²α−sin²αsin²β)+sin²α+cos²αcos²β=sin²α(1-sin²β)+sin²α+cos²αcos²β=sin²αc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国慢性阻塞性肺疾病基层诊疗与管理指南(2024年)解读 2
- 图木舒克职业技术学院《中级俄语》2023-2024学年第一学期期末试卷
- 新疆维吾尔自治区喀什二中2025届下学期高三物理试题第一次模拟考试试卷含解析
- 辽宁省四校联考2024-2025学年高三下学期第一次诊断性考试英语试题试卷含解析
- 南昌应用技术师范学院《专题口译》2023-2024学年第二学期期末试卷
- 江苏省南京市示范名校2025年高三第六次月考含解析
- 2025年广西安全员B证考试试题题库
- 台州科技职业学院《测量学实训》2023-2024学年第二学期期末试卷
- 天津开发区职业技术学院《模式识别技术》2023-2024学年第二学期期末试卷
- 2025年甘肃金昌市丝路众创网络科技有限公司招聘笔试参考题库含答案解析
- 09J202-1 坡屋面建筑构造(一)-1
- 小学生运动会安全教育课件
- 扁平足的症状与矫正方法
- 青春健康知识100题
- 员工考勤培训课件
- 危机处理与应急管理
- 国开电大操作系统-Linux系统使用-实验报告
- 黑臭水体监测投标方案(技术方案)
- 2023年高考生物全国通用易错题13致死类的遗传题(解析版)
- 四百字作文格子稿纸(可打印编辑)
- 中建项目装饰装修工程施工方案
评论
0/150
提交评论