四川省德阳市旌阳区2024届九年级数学第一学期期末调研试题含解析_第1页
四川省德阳市旌阳区2024届九年级数学第一学期期末调研试题含解析_第2页
四川省德阳市旌阳区2024届九年级数学第一学期期末调研试题含解析_第3页
四川省德阳市旌阳区2024届九年级数学第一学期期末调研试题含解析_第4页
四川省德阳市旌阳区2024届九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省德阳市旌阳区2024届九年级数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B. C. D.2.下列事件中,必然事件是()A.一定是正数B.八边形的外角和等于C.明天是晴天D.中秋节晚上能看到月亮3.下列命题正确的是(

)A.圆是轴对称图形,任何一条直径都是它的对称轴B.平分弦的直径垂直于弦,并且平分弦所对的弧C.相等的圆心角所对的弧相等,所对的弦相等D.同弧或等弧所对的圆周角相等4.如果、是一元二次方程的两根,则的值是()A.3 B.4 C.5 D.65.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.6.如图所示的几何体为圆台,其俯视图正确的是A. B. C. D.7.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(

)A.8S B.9S C.10S D.11S8.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2) B.(﹣2,﹣1) C.(1,2) D.(2,1)9.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则sin∠BDE的值是()A. B. C. D.10.抛物线与y轴的交点为()A. B. C. D.二、填空题(每小题3分,共24分)11.若关于的一元二次方程有实数根,则的值可以为________(写出一个即可).12.如图,的顶点均在上,,则的半径为_________.13.小慧准备给妈妈打个电话,但她只记得号码的前位,后三位由,,这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.14.计算:=_____________15.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为___________.16.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为__17.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.18.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.三、解答题(共66分)19.(10分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?20.(6分)一家公司招考员工,每位考生要在A、B、C、D、E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A、B两题,试求这位考生合格的概率.21.(6分)如图,中,,,为内部一点,且.(1)求证:;(2)求证:.22.(8分)如图,正方形中,,点在上运动(不与重台),过点作,交于点,求运动到多长时,有最大值,并求出最大值.23.(8分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:△APD≌△CPD;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.24.(8分)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离.25.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:(1)他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.(2)如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)(3)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.26.(10分)如图,某数学兴趣小组的同学利用标杆测量旗杆的高度:将一根米高的标杆竖直放在某一位置,有一名同学站在处与标杆底端、旗杆底端成一条直线,此时他看到标杆顶端与旗杆顶端重合,另外一名同学测得站立的同学离标杆米,离旗杆米.如果站立的同学的眼睛距地面米,过点作于点,交于点,求旗杆的高度.

参考答案一、选择题(每小题3分,共30分)1、B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD与BC间的位置关系,根据平行线分线段成比例定理,得结论.【题目详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故选B.【题目点拨】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.2、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】A、a2一定是非负数,则a2一定是正数是随机事件;B、八边形的外角和等于360°是必然事件;C、明天是晴天是随机事件;D、中秋节晚上能看到月亮是随机事件;故选B.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、D【分析】根据圆的对称性、圆周角定理、垂径定理逐项判断即可.【题目详解】解:A.圆是轴对称图形,它有无数条对称轴,其对称轴是直径所在的直线或过圆心的直线,此命题不正确;B.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,此命题不正确;C.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,此命题不正确;D.同弧或等弧所对的圆周角相等,此命题正确;故选:D.【题目点拨】本题考查的知识点是圆的对称性、圆周角定理以及垂径定理,需注意的是对称轴是一条直线并非是线段,而圆的两条直径互相平分但不一定垂直.4、B【解题分析】先求得函数的两根,再将两根带入后面的式子即可得出答案.【题目详解】由韦达定理可得α+β=-3,又=3--=)=1+3=4,所以答案选择B项.【题目点拨】本题考察了二次方程的求根以及根的意义和根与系数的关系,根据得到的等量关系是解决本题的关键.5、B【解题分析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有种,且都是等可能的,其中两人同时选择“参加社会调查”的结果有种,则所求概率故选B.点睛:求概率可以用列表法或者画树状图的方法.6、C【解题分析】试题分析:俯视图是从物体上面看,所得到的图形.从几何体的上面看所得到的图形是两个同心圆.故选C.考点:简单几何体的三视图7、B【解题分析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.8、A【题目详解】∵正比例函数y=2x和反比例函数y=的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(-1,-2).故选A.9、C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【题目详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴=2∴AF=2EF,∴AE=3EF=DE,∴sin∠BDE=,故选C.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.10、C【解题分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【题目详解】解:令x=0,则y=3,

∴抛物线与y轴的交点为(0,3),

故选:C.【题目点拨】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.二、填空题(每小题3分,共24分)11、5(答案不唯一,只有即可)【解题分析】由于方程有实数根,则其根的判别式△≥1,由此可以得到关于c的不等式,解不等式就可以求出c的取值范围.【题目详解】解:一元二次方程化为x2+6x+9-c=1,∵△=36-4(9-c)=4c≥1,解上式得c≥1.故答为5(答案不唯一,只有c≥1即可).【题目点拨】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>1时,一元二次方程有两个不相等的实数根;当∆=1时,一元二次方程有两个相等的实数根;当∆<1时,一元二次方程没有实数根.关键在于求出c的取值范围.12、1【分析】连接AO,BO,根据圆周角的性质得到,利用等边三角形的性质即可求解.【题目详解】连接AO,BO,∵∴又AO=BO∴△AOB是等边三角形,∴AO=BO=AB=1即的半径为1故答案为1.【题目点拨】此题主要考查圆的半径,解题的关键是熟知圆周角的性质.13、【解题分析】首先根据题意可得:可能的结果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【题目详解】∵她只记得号码的前5位,后三位由5,1,2,这三个数字组成,∴可能的结果有:512,521,152,125,251,215;∴他第一次就拨通电话的概率是:故答案为.【题目点拨】考查概率的求法,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的之比.14、-1【分析】根据二次根式的性质和负整数指数幂的运算法则进行计算即可.【题目详解】故答案为:-1.【题目点拨】此题主要考查了二次根式的性质以及负整数指数幂的运算法则,熟练掌握其性质和运算法则是解此题的关键.15、(,)【解题分析】过A′作A′C⊥x轴于C,根据旋转得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【题目详解】如图,过A′作A′C⊥x轴于C,∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×=,∴A′的坐标为(,-).故答案为:(,).【题目点拨】本题考查的知识点是坐标与图形变化-旋转,解题的关键是熟练的掌握坐标与图形变化-旋转.16、1【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=-2(x-1)2+1.根据二次函数的性质来求最值即可.【题目详解】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+1.∴当x=1时,C最大值=1.即:四边形OAPB周长的最大值为1.【题目点拨】本题主要考查二次函数的最值以及二次函数图象上点的坐标特征.设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+1.最后根据根据二次函数的性质来求最值是关键.17、【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【题目详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【题目点拨】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.18、﹣1或1【解题分析】试题分析:根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.∵关于x的一元二次方程x1+1ax+a+1=0有两个相等的实数根,∴△=0,即4a1﹣4(a+1)=0,解得a=﹣1或1.考点:根的判别式.三、解答题(共66分)19、购买了20件这种服装【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可;【题目详解】解:设购买了件这种服装.,∵∴购买的演出服多于10件根据题意得出:,解得:,,当时,元元,符合题意;当时,元元,不合题意,舍去;故答案为:.答:购买了20件这种服装.【题目点拨】本题考查了一元二次方程的应用,解答本题的关键是根据题意找出等量关系列出方程.20、【题目详解】解:树状图为:

从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个,所以,P(这位考生合格)=答:这位考生合格的概率是.21、(1)证明见解析;(2)证明见解析.【分析】(1)利用等腰三角形的性质、三角形内角和定理以及等式的性质判断出∠PBC=∠PAB,进而得出结论;

(2)由(1)的结论得出,进而得出,即可得出结论.【题目详解】证明:(1)∵,,∴,又,∴,∴,又∵,∴;(2)∵,∴在中,,∴,∴,∴.【题目点拨】本题主要考查相似三角形的判定与性质的知识点,熟练三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质,勾股定理等知识点,综合性较强,有一定难度.22、当BP=6时,CQ最大,且最大值为1.【分析】根据正方形的性质和余角的性质可得∠BEP=∠CPQ,进而可证△BPE∽△CQP,设CQ=y,BP=x,根据相似三角形的性质可得y与x的函数关系式,然后利用二次函数的性质即可求出结果.【题目详解】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BEP+∠BPE=90°,∵,∴∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.∴△BPE∽△CQP,∴.设CQ=y,BP=x,∵AB=BC=12,∴CP=12﹣x.∵AE=AB,AB=12,∴BE=9,∴,化简得:y=﹣(x2﹣12x),即y=﹣(x﹣6)2+1,所以当x=6时,y有最大值为1.即当BP=6时,CQ有最大值,且最大值为1.【题目点拨】本题考查了正方形的性质、相似三角形的判定和性质和二次函数的性质等知识,属于常见题型,熟练掌握相似三角形的性质和二次函数的性质是解答的关键.23、(1)证明见解析;(2)90°;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,∠ADP=∠CDP=45,即可证明全等;(2)设,利用三角形内角和性质及外角性质得到,,再利用周角计算得出x值;(3)AP=CE.设,利用三角形内角和性质及外角性质得到,,求出,得到是等边三角形,即可证得AP=CE.【题目详解】解:(1)四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP=45,在与中,,∴;(2)设,由(1)得,,因为PA=PE,所以所以;(3)AP=CE.设,由(1)得,,∵PA=PE且在菱形ABCD中,∴,∴,由(1)得PA=PC,∴PC=PE,∴是等边三角形,∴PE=PC=CE,∴AP=CE.【题目点拨】此题考查全等三角形的判定,正方形的性质,菱形的性质,三角形的内角和及外角性质,(2)与(3)图形有变化,解题思路不变,做题中注意总结解题的方法.24、(1)见解析;(2)见解析;(3)8米【解题分析】【试题分析】(1)点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论