山东省淄博市博山2024届数学九上期末考试模拟试题含解析_第1页
山东省淄博市博山2024届数学九上期末考试模拟试题含解析_第2页
山东省淄博市博山2024届数学九上期末考试模拟试题含解析_第3页
山东省淄博市博山2024届数学九上期末考试模拟试题含解析_第4页
山东省淄博市博山2024届数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博市博山2024届数学九上期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为(

)A.2.4m B.24m C.0.6m D.6m2.若点在反比例函数的图象上,且,则下列各式正确的是()A. B. C. D.3.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,4.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°5.将抛物线如何平移得到抛物线()A.向左平移2个单位,向上平移3个单位; B.向右平移2个单位,向上平移3个单位;C.向左平移2个单位,向下平移3个单位; D.向右平移2个单位,向下平移3个单位.6.用配方法解一元二次方程x2﹣2x=5的过程中,配方正确的是()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=97.二次函数图象的顶点坐标是()A. B. C. D.8.抛物线的顶点坐标为()A. B. C. D.9.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点10.为了得到函数的图象,可以将函数的图象()A.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度B.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度C.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度D.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度二、填空题(每小题3分,共24分)11.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l上,则木板上点A滚动所经过的路径长为_____.12.函数y=的自变量x的取值范围是_______________.13.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是_____.14.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.15.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.16.已知且为锐角,则_____.17.方程ax2+x+1=0有两个不等的实数根,则a的取值范围是________.18.如图,△ABC是边长为2的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作;取中点,作∥,∥,得到四边形,它的面积记作.照此规律作下去,则=____________________.三、解答题(共66分)19.(10分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数方差中位数甲7①.7乙②.5.4③.(1)请将右上表补充完整:(参考公式:方差)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.20.(6分)如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)把△ABC绕着点C逆时针旋转90°,画出旋转后对应的△A1B1C;(2)求△ABC旋转到△A1B1C时线段AC扫过的面积.21.(6分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).22.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?23.(8分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.24.(8分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.25.(10分)如图1为放置在水平桌面上的台灯,底座的高为,长度均为的连杆,与始终在同一平面上.当,时,如图2,连杆端点离桌面的高度是多少?26.(10分)如图,在中,点在边上,且,已知,.(1)求的度数;(2)我们把有一个内角等于的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比.①写出图中所有的黄金三角形,选一个说明理由;②求的长.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】试题解析:作AN⊥EF于N,交BC于M,

∵BC∥EF,

∴AM⊥BC于M,

∴△ABC∽△AEF,

∴,

∵AM=0.6,AN=30,BC=0.12,

∴EF==6m.

故选D.2、C【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可.【题目详解】解:反比例函数为,函数图象在第二、四象限,在每个象限内,随着的增大而增大,又,,,.故选C.【题目点拨】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.3、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【题目详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【题目点拨】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.4、B【解题分析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.5、C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【题目详解】根据二次函数的平移规律可知,将抛物线向左平移2个单位,再向下平移3个单位即可得到抛物线,故选:C.【题目点拨】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.6、B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【题目详解】解:方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=5+1,即(x﹣1)2=6,故选:B.【题目点拨】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7、A【分析】根据二次函数顶点式即可得出顶点坐标.【题目详解】∵,∴二次函数图像顶点坐标为:.故答案为A.【题目点拨】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).8、D【解题分析】根据抛物线顶点式的性质进行求解即可得答案.【题目详解】∵解析式为∴顶点为故答案为:D.【题目点拨】本题考查了已知二次函数顶点式求顶点坐标,注意点坐标符号有正负.9、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【题目详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【题目点拨】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.10、A【分析】先求出两个二次函数的顶点坐标,然后根据顶点坐标即可判断对称或平移的方式.【题目详解】的顶点坐标为的顶点坐标为∴点先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度可得到点故选A【题目点拨】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.二、填空题(每小题3分,共24分)11、π【分析】木板转动两次的轨迹如图(见解析):第一次转动是以点M为圆心,AM为半径,圆心角为60度;第二次转动是以点N为圆心,为半径,圆心角为90度,根据弧长公式即可求得.【题目详解】由题意,木板转动两次的轨迹如图:(1)第一次转动是以点M为圆心,AM为半径,圆心角为60度,即所以弧的长(2)第二次转动是以点N为圆心,为半径,圆心角为90度,即所以弧的长(其中半径)所以总长为故答案为.【题目点拨】本题考查了图形的翻转、弧长公式(弧长,其中是圆心角弧度数,为半径),理解图形翻转的轨迹是解题关键.12、x≥3【分析】分式有意义,分母不为0;二次根式的被开方数是非负数.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【题目详解】根据二次根式有意义,分式有意义得:x-3≥0且x+1≠0,解得:x≥3故答案为x≥3【题目点拨】本题考查函数自变量的取值范围,基础知识扎实是解题关键13、-2或1.【解题分析】将x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案为-2或1.点睛:已知方程的一个实数根,要求方程中的未知参数,把根代入方程即可.14、1【分析】求得直线与抛物线的交点坐标,从而求得截得的线段的长即可.【题目详解】解:令y=2得:x2﹣1x+2=2,解得:x=0或x=1,所以交点坐标为(0,2)和(1,2),所以截得的线段长为1﹣0=1,故答案为:1.【题目点拨】本题考查了二次函数的性质,解题的关键是求得直线与抛物线的交点,难度不大.15、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【题目详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【题目点拨】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.16、2【分析】根据特殊角的三角函数值,先求出,然后代入计算,即可得到答案.【题目详解】解:∵,为锐角,∴,∴;∴====;故答案为:2.【题目点拨】本题考查了特殊角的三角函数值,二次根式的性质,负整数指数幂,零次幂,解题的关键是正确求出,熟练掌握运算法则进行计算.17、且a≠0【解题分析】∵方程有两个不等的实数根,∴,解得且.18、【分析】先求出△ABC的面积,再根据中位线性质求出S1,同理求出S2,以此类推,找出规律即可得出S2019的值.【题目详解】∵△ABC是边长为2的等边三角形,∴△ABC的高=∴S△ABC=,∵E是BC边的中点,ED∥AB,∴ED是△ABC的中位线,∴ED=AB∴S△CDE=S△ABC,同理可得S△BEF=S△ABC∴S1=S△ABC==,同理可求S2=S△BEF=S△ABC==,以此类推,Sn=·S△ABC=∴S2019=.【题目点拨】本题考查中位线的性质和相似多边形的性质,熟练运用性质计算出S1和S2,然后找出规律是解题的关键.三、解答题(共66分)19、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【题目详解】(1)①甲的方差为:,②乙的平均数为:,③乙的中位数为:,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【题目点拨】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.20、(1)见解析;(2)2π【分析】(1)根据旋转角度、旋转中心、旋转方向找出各点的对称点,顺次连接即可;

(2)根据扇形的面积公式求解即可.【题目详解】(1)如图所示,△A1B1C即为所求;(2)∵CA=,∴S==2π.【题目点拨】本题考查旋转作图的知识,难度不大,注意掌握旋转作图的三要素,旋转中心、旋转方向、旋转角度.21、(1)∠ECO=∠OAC;(2)①OM=ON,理由见解析,②EM的值为m+m或m﹣m【分析】(1)结论:∠ECO=∠OAC.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明△COM≌△AON(ASA),即可解决问题.②分两种情形:如图3﹣1中,当点N在CA的延长线上时,如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.分别求解即可解决问题.【题目详解】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.【题目点拨】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.22、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价后的百分率,40元降至32.4元就是方程的等量条件,列出方程求解即可;(2)设每天要想获得110元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可【题目详解】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率为10%;(2)设每天要想获得110元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得解得:=1.1,=2.1,∵有利于减少库存,∴y=2.1.答:要使商场每月销售这种商品的利润达到110元,且更有利于减少库存,则每件商品应降价2.1元.【题目点拨】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.23、(1);(2)△BPC面积的最大值为;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D为顶点的三角形与△ABC相似有两种情况,分别求解即可;(4)作点E关于y轴的对称点E′(-2,9),作点F(2,9)关于x轴的对称点F′(3,-8),连接E′、F′分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解.【题目详解】解:(1)把,分别代入得:∴∴抛物线的表达式为:.(2)如图,过点P作PH⊥OB交BC于点H令x=0,得y=5∴C(0,5),而B(5,0)∴设直线BC的表达式为:∴∴∴设,则∴∴∴∴△BPC面积的最大值为.(3)如图,∵C(0,5),B(5,0)∴OC=OB,∴∠OBC=∠OCB=45°∴AB=6,BC=要使△BCD与△ABC相似则有或①当时∴则∴D(0,)②当时,CD=AB=6,∴D(0,1)即:D的坐标为(0,1)或(0,)(4)∵∵E为抛物线的顶点,∴E(2,9)如图,作点E关于y轴的对称点E'(﹣2,9),∵F(3,a)在抛物线上,∴F(3,8),∴作点F关于x轴的对称点F'(3,8),则直线E'F'与x轴、y轴的交点即为点M、N设直线E'F'的解析式为:则∴∴直线E'F'的解析式为:∴,0),N(0,).【题目点拨】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论