2024届山东省德州市乐陵市九年级数学第一学期期末质量跟踪监视试题含解析_第1页
2024届山东省德州市乐陵市九年级数学第一学期期末质量跟踪监视试题含解析_第2页
2024届山东省德州市乐陵市九年级数学第一学期期末质量跟踪监视试题含解析_第3页
2024届山东省德州市乐陵市九年级数学第一学期期末质量跟踪监视试题含解析_第4页
2024届山东省德州市乐陵市九年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省德州市乐陵市九年级数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,以△ABC的三条边为边,分别向外作正方形,连接EF,GH,DJ,如果△ABC的面积为8,则图中阴影部分的面积为()A.28 B.24 C.20 D.162.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是()A. B. C. D.3.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.4.在同一坐标系内,一次函数与二次函数的图象可能是A. B. C. D.5.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k<3 B.k≥3 C.k>3 D.k≠36.在Rt△ABC中,∠C=90°,AC=4,BC=3,则是A. B. C. D.7.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个8.已知反比例函数y=﹣,下列结论不正确的是()A.函数的图象经过点(﹣1,3) B.当x<0时,y随x的增大而增大C.当x>﹣1时,y>3 D.函数的图象分别位于第二、四象限9.计算的值为()A.1 B.C. D.10.下列说法不正确的是()A.所有矩形都是相似的B.若线段a=5cm,b=2cm,则a:b=5:2C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cmD.四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段二、填空题(每小题3分,共24分)11.如图,已知AB,CD是☉O的直径,弧AE=弧AC,∠AOE=32°,那么∠COE的度数为________度.12.如图,的半径为,双曲线的关系式分别为和,则阴影部分的面积是__________.13.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.14.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式,则火箭升空的最大高度是___m15.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).16.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.17.如图,在△ABC中DE∥BC,点D在AB边上,点E在AC边上,且AD:DB=2:3,四边形DBCE的面积是10.5,则△ADE的面积是____.18.如图,抛物线与直线的两个交点坐标分别为,则关于x的方程的解为________.三、解答题(共66分)19.(10分)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)20.(6分)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°(1)求舞台的高AC(结果保留根号)(2)楼梯口B左侧正前方距离舞台底部C点3m处的文化墙PM是否要拆除?请说明理由.21.(6分)(1)用配方法解方程:;(2)用公式法解方程:.22.(8分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.23.(8分)如图,P是正方形ABCD的边CD上一点,∠BAP的平分线交BC于点Q,求证:AP=DP+BQ.24.(8分)如图1,在平面直角坐标系中,函数(为常数,,)的图象经过点和,直线与轴,轴分别交于,两点.(1)求的度数;(2)如图2,连接、,当时,求此时的值:(3)如图3,点,点分别在轴和轴正半轴上的动点.再以、为邻边作矩形.若点恰好在函数(为常数,,)的图象上,且四边形为平行四边形,求此时、的长度.25.(10分)先化简,后求值:,其中x=﹣1.26.(10分)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,根据全等三角形的性质得到EM=CN,于是得到S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,于是得到结论.【题目详解】解:过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,∴∠M=∠N=90°,∠EAM+∠MAC=∠MAC+∠CAB=90°,∴∠EAM=∠CAB∵四边形ACDE、四边形ABGF是正方形,∴AC=AE,AF=AB,∴∠EAM≌△CAN,∴EM=CN,∵AF=AB,∴S△AEF=AF•EM,S△ABC=AB•CN=8,∴S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,∴图中阴影部分的面积=3×8=24,故选:B.【题目点拨】本题主要考查了正方形的性质,全等三角形判定和性质,正确的作辅助线是解题的关键.2、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【题目详解】∵河堤横断面迎水坡AB的坡比是,∴,∴,解得:AC=,故AB===8(m),故选:D.【题目点拨】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.3、C【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【题目详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.4、C【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【题目详解】x=0时,两个函数的函数值y=b,

所以,两个函数图象与y轴相交于同一点,故B、D选项错误;

由A、C选项可知,抛物线开口方向向上,

所以,a>0,

所以,一次函数y=ax+b经过第一三象限,

所以,A选项错误,C选项正确.

故选C.5、C【分析】根据反比例函数的性质可解.【题目详解】解:∵双曲线在每一个象限内,y随x的增大而减小,∴k-3>0∴k>3故选:C.【题目点拨】本题考查了反比例函数的性质,掌握反比例函数,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.6、A【分析】根据题意画出图形,由勾股定理求出AB的长,再根据三角函数的定义解答即可.【题目详解】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∴sinA=,故选A.【题目点拨】本题考查锐角三角函数的定义.关键是熟练掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7、C【解题分析】根据黄金分割的概念和黄金比值进行解答即可得.【题目详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【题目点拨】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.8、C【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.进行判断即可.【题目详解】A、反比例函数y=﹣的图象必经过点(﹣1,3),原说法正确,不合题意;B、k=﹣3<0,当x<0,y随x的增大而增大,原说法正确,不符合题意;C、当x>﹣1时,y>3或y<0,原说法错误,符合题意;D、k=﹣3<0,函数的图象分别位于第二、四象限,原说法正确,不符合题意;故选:C.【题目点拨】本题主要考查反比例函数的性质,掌握反比例函数的图象和性质,是解题的关键.9、B【解题分析】逆用同底数幂的乘法和积的乘方将式子变形,再运用平方差公式计算即可.【题目详解】解:故选B.【题目点拨】本题考查二次根式的运算,高次幂因式相乘往往是先设法将底数化为积为1或0的形式,然后再灵活选用幂的运算法则进行化简求值.10、A【解题分析】根据相似多边形的性质,矩形的性质,成比例线段,黄金分割判断即可.【题目详解】解:A.所有矩形对应边的比不一定相等,所以不一定都是相似的,A不正确,符合题意;B.若线段a=5cm,b=2cm,则a:b=5:2,B正确,不符合题意;C.若线段AB=cm,C是线段AB的黄金分割点,且AC>BC,则AC=cm,C正确,不符合题意;D.∵1:2=2:4,∴四条长度依次为lcm,2cm,2cm,4cm的线段是成比例线段,D正确,不符合题意;故选:A.【题目点拨】本题考查的是相似多边形的性质,矩形的性质,成比例线段,黄金分割,掌握它们的概念和性质是解题的关键.二、填空题(每小题3分,共24分)11、64【分析】根据等弧所对的圆心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【题目详解】解:∵弧AE=弧AC,(已知)

∴∠AOE=∠COA(等弧所对的圆心角相等);

又∠AOE=32°,

∴∠COA=32°,

∴∠COE=∠AOE+∠COA=64°.

故答案是:64°.【题目点拨】本题考查圆心角、弧、弦的关系.在同圆或等圆中,两个圆心角、两条弧、两条弦三组量之间,如果有一组量相等,那么,它们所对应的其它量也相等.12、2π【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案.【题目详解】解:双曲线和的图象关于x轴对称,根据图形的对称性,把第三象限和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以S阴影=.故答案为:2π.【题目点拨】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,这是解题的关键.13、1.【解题分析】试题分析:解方程x2-13x+40=0,(x-5)(x-8)=0,∴x1=5,x2=8,∵3+4=7<8,∴x=5.∴周长为3+4+5=1.故答案为1.考点:1一元二次方程;2三角形.14、1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【题目详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h取得最大值,火箭能达到最大高度为1m.故答案为:1.【题目点拨】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.15、【分析】直接利用黄金分割的定义求解.【题目详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【题目点拨】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.16、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【题目详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【题目点拨】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.17、1【分析】由AD:DB=1:3,可以得到相似比为1:5,所以得到面积比为4:15,设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x,根据题意四边形的面积为10.5,可以求出x,即可求出△ADE的面积.【题目详解】∵DE∥BC∴,∵AD:DB=1:3∴相似比=1:5

∴面积比为4:15设△ADE的面积为4x,则△ABC的面积为15x,故四边形DBCE的面积为11x∴11x=10.5,解得x=0.5∴△ADE的面积为:4×0.5=1故答案为:1.【题目点拨】本题主要考查了相似三角形,熟练面积比等于相似比的平方以及准确的列出方程是解决本题的关键.18、【题目详解】∵抛物线与直线的两个交点坐标分别为,∴方程组的解为,,即关于x的方程的解为.三、解答题(共66分)19、由的高约为丈.【分析】由题意得里,尺,尺,里,过点作于点,交于点,得尺,里,里,根据相似三角形的性质即可求出.【题目详解】解:由题意得里,尺,尺,里.如图,过点作于点,交于点.则尺,里,里,,∴△ECH∽△EAG,,丈,丈.答:由的高约为丈.【题目点拨】此题主要考查了相似三角形在实际生活中的应用,能够将实际问题转化成相似三角形是解题的关键.20、(1)m;(2)不需拆除文化墙PM,理由见解析.【分析】(1)根据锐角三角函数,即可求出AC;(2)由题意可知:CM=3m,根据锐角三角函数即可求出DC,最后比较DC和CM的大小即可判断.【题目详解】解:(1)在Rt△ABC中,∠ABC=45°,坡长AB=2m,∴AC=AB·sin∠ABC=m答:舞台的高AC为m;(2)不需拆除文化墙PM,理由如下,由题意可知:CM=3m在Rt△ADC中,∠ADC=30°,AC=m∴DC=m∵m<3m∴DC<CM∴不需拆除文化墙PM.【题目点拨】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.21、(1);;(2);【分析】(1)先把左边的4移项到右边成-4,再配方,两边同时加32,左边得到完全平方,再得出两个一元一次方程进行解答;(2)先化成一元二次方程的一般式,得出a、b、c,计算b2-4ac判定根的情况,最后运用求根公式即可求解.【题目详解】解:(1)x2+6x+4=0x2+6x=-4x2+6x+9=-4+9(x+3)2=5;(2)5x2-3x=x+1,5x2-4x-1=0,b2-4ac=(-4)2-4×5×(-1)=36,,【题目点拨】本题主要考查了运用配方法、公式法解一元二次方程,运用公式法解方程时,要先把方程化为一般式,找到a、b、c的值,然后用b2-4ac判定根的情况,最后运用公式即可求解.22、周长=32,面积=32.【分析】由在菱形ABCD中,∠ABC=60°,可得△ABC是等边三角形,又由对角线AC=1,即可求得此菱形的边长,进而可求出菱形的周长,再根据菱形的面积等于对角线乘积的的一半即可求出其面积.【题目详解】∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=1.∴菱形ABCD的周长=4×1=32,∵BO==4,∴BD=2BO=1,∴菱形ABCD的面积=×1×=32.【题目点拨】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.23、证明见解析.【解题分析】试题分析:根据旋转的性质得出∠E=∠AQB,∠EAD=∠QAB,进而得出∠PAE=∠E,即可得出AP=PE=DP+DE=DP+BQ.试题解析:证明:将△ABQ绕A逆时针旋转90°得到△ADE,由旋转的性质可得出∠E=∠AQB,∠EAD=∠QAB,又∵∠PAE=90°﹣∠PAQ=90°﹣∠BAQ=∠DAQ=∠AQB=∠E,在△PAE中,得AP=PE=DP+DE=DP+BQ.点睛:此题主要考查了旋转的性质,根据已知得出PE=DP+DE是解题关键.24、(1);(2);(3)【分析】(1)根据点P、Q的坐标求出直线PQ的解析式,得到点C、D的坐标,根据线段长度得到的度数;(2)根据已知条件求出∠QOP=45,再由即可求出m的值;(3)根据平行四边形及矩形的性质得到,,设设,得到点M的坐标,又由两者共同求出n,得到结果.【题目详解】(1)由,,得,∴,∴,∴为等腰直角三角形,∴;(2)∵,∴,∴易得,∴,∴(舍负);(3)∵四边形为平行四边形,∴,又,∴,∴.设.则为代入,∴,∴,又,∴,由,得(舍负),∴当时,符合题意.【题目点拨】此题是反比例函数与一次函数的综合题,考查反比例函数的性质,一次函数的性质,勾股定理,矩形的性质,平行四边形的性质.25、x﹣2,-2.【分析】由题意先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【题目详解】解:==x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣2.【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.26、(1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为或.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;(3)设P(m,﹣m2+3m+4)(m>),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论