版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
集成电路工艺信息学院电子科学与技术参考书:C.Y.Chang,S.M.Sze,“ULSITechnology”王阳元等,“集成电路工艺原理”M.Quirk,J.Serda,“半导体制造技术”成绩计算:平时成绩(出勤、作业、小测验)20%+期终考试80%请假需有辅导员签名!补交作业,抄袭,扣分!!本门课程共分几大块来介绍:一、绪论主要介绍微电子器件工艺的发展历史,集成电路的发展历史及工艺实例。二、硅的晶体结构主要介绍硅晶体的特点,晶向,晶面,缺陷,杂质等等。三、热处理及离子注入氧化,扩散,离子注入工艺四、薄膜工艺物理气相淀积,化学气相淀积,外延工艺五、图形转移工艺光刻与刻蚀六、工艺集成金属化与多层互连,工艺集成七、后工艺,测试减薄,蒸金,划片,烧结,键合,封装,测试集成电路工艺分几大块技术:图形转移:将设计在掩膜版(类似于照相底片)上的图形转移到半导体单晶片上
光刻:接触光刻、接近光刻、投影光刻、电子束光刻等
刻蚀:干法刻蚀、湿法刻蚀掺杂:根据设计的需要,将适量的各种杂质掺杂在需要的位置上,形成晶体管、接触等
离子注入:退火
扩散:制膜:制作各种材料的薄膜
氧化:干氧氧化、湿氧氧化等
CVD:APCVD、LPCVD、PECVD
PVD:蒸发、溅射Chap0绪论Chap1硅的晶体结构Chap2氧化Chap3扩散工艺Chap4离子注入工艺Chap5物理气相沉积Chap6化学气相淀积Chap7外延Chap8光刻与刻蚀工艺Chap9金属化与多层互连Chap10工艺集成Chap11后工艺Chap12器件的可靠性测试
集成电路制备主要工艺及设备
1.晶片制备2.前道工艺
3.后道工艺1.晶片制备
1.1单晶拉伸:在适当的温度下,将特制的籽晶与熔化于坩埚内的高纯多晶材料相接触,在籽晶与坩埚相对旋转的同时,按一定速度向上提拉籽晶,使熔体不断沿籽晶晶向结晶,直接拉制成单晶。
相关设备>>单晶炉1.2切片:将半导体单晶按所需晶向切割成指定厚度的薄片
相关设备>>内圆切片机多刀切割机1.3倒角:由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的设备自动修整晶片边缘形状和外径尺寸。
相关设备>>倒角机
1.4抛光:利用抛光剂对研磨后的晶片进行物理、化学的表面加工,以获取无晶格损伤的高洁净度、高平整度的镜面晶片。
相关设备>>单/双面抛光机单/多头抛光机1.5清洗:合理的清洗是保证硅片表面质量的重要条件。在晶片制备过程中需要多次清洗,以去除残留在晶片表面或边缘的废屑等。
相关设备>>清洗机冲洗甩干机
2.前道工艺
2.1外延:在单晶衬底晶片上生长一层具有与基片不同电子特性的薄硅层。
相关设备>>外延炉2.2氧化:在高温下,氧和水蒸气跟硅表面起化学作用,形成薄厚均匀的硅氧化层。
相关设备>>氧化炉
2.3化学汽相淀积(CVD):使一种或数种物质的气体以某种方式激活后,在衬底表面发生化学反应,并淀积所需固体薄膜。
相关设备>>CVD设备2.4溅射:正离子受强电场加速,形成高能量的离子流轰击靶材,当离子的动能超过靶原子的结合能时,靶表面的原子就脱离表面,溅射到对面的阳极上,淀积成薄膜。
相关设备>>溅射台
2.5光刻:将掩模图形转印到涂有光刻胶的衬底晶片上。对准和曝光是光刻工艺中最关键的工序
相关设备>>接触/接近式曝光机分步投影曝光机
2.6刻蚀:活性气体可使曝光区,在晶片表面建立几何图形。
相关设备>>刻蚀机
2.7离子注入:先使待掺杂的原子电离,再加速到一定能量使之“注入”到晶体中,经过退火使杂质激活,达到掺杂目的。
相关设备>>离子注入机
3.后道工艺
3.1探针测试:对晶圆上的每个电路进行电性能测试及特性测试。
相关设备>>探针测试台3.2划片:将具有集成电路管芯的圆片用金刚砂刃具、激光束等方法分割成单独的管芯以便封装。
相关设备>>砂轮划片机
3.3粘片:把集成电路芯片用银浆、银玻璃、低温焊料或共晶焊料装配到塑料封装的引线框架或陶瓷封装外壳底座上。
相关设备>>粘片机3.4引线键合:用金引线把集成电路管芯上的压焊点与外壳或引线框架上的外引线内引出端通过键合连接起来。
相关设备>>引线键合机
3.5封装:密封组件用作机械和外界保护。为保证封装质量,管壳必须具有良好的气密性、足够的机械强度、良好的电气性能和热性能。
相关设备>>塑封压机切筋打弯机打标机
3.6终测:又叫成品测试,目的是确保IC能满足最低电气规范化要求,并按不同要求分类,统计出分类结果和不同参数分布,供质量和生产部门参考。
相关设备>>数字集成电路测试系
Chap0绪论
微电子科学是在固体物理、微电子器件工艺和电子学三者的基础上发展起来的一门新的学科。近几年来,它发展迅速,主要归功于微电子器件工艺(即半导体工艺)的迅速发展。大规模集成电路和超大规模集成电路的诞生和发展,是微电子器件发展的里程碑。
0.1微电子器件工艺的发展历史
大致分为三个阶段:
1.生长法:在20世纪30、40年代,经过对半导体材料的性质及特点的深入研究和长时间的实践和探索,开始利用锗、硅晶体制造P-N结。刚开始方法较为原始,它是在拉制锗、硅单晶体的过程中实现的。以锗单晶为例,由于熔化的晶体的导电类型为N型(或P型),在拉制过程中,某一时刻突然改变掺杂浓度,如放入某种受主杂质(或施主杂质),这样已拉制好的单晶,先头部分为N型(或P型),而后一部分就成为P型(或N型),然后将锗单晶切成小片,在P型和N型交界面处就形成了一个P-N结,这就是晶体二极管。
生长结晶体管2.
合金法:
到了20世纪50年代,采用合金法制造PN结。它是将一个受主杂质(施主杂质)的小球,放在一块N型(P型)锗晶片上,然后,将它们一起放在高温下加热,使小球熔化,以合金方式浸入到锗晶体中,当晶片完全冷却后,小球上制成了合金二极管或合金三极管。3.
扩散法:
上述两种制备PN结的方法,虽然工艺十分简单,但是基区很难制的很薄,直接影响了晶体管的特性。因此,经过探索研究,找到了一种更好的方法,这就是扩散法。用这种方法可以把基区制得十分薄,而且电阻率可以不均匀,这样晶体管的电学特性就大大提高了。扩散法是在硅平面工艺基础上发展起来的。合金结晶体管扩散平面工艺发明人:JeanHoerni--Fairchild1958-1960:氧化p-n结隔离Al的蒸发……扩散光刻氧化掩蔽平面工艺基本光刻步骤光刻胶掩膜版应用平面工艺可以实现多个器件的集成
因为在硅片上用热生长氧化法能生长出具有优良电绝缘性能,又能掩蔽杂质扩散的二氧化硅层。此后,光刻技术,薄膜蒸发技术又先后被引进到半导体器件制造中来。这样,氧化、扩散、光刻、外延等技术相结合,导致硅平面工艺技术突飞猛进的发展。用扩散法制造的硅晶体管,其频率、功率、饱和压降和表面噪声等性能以及器件的稳定性、可靠性,大大超过了锗器件,这为集成电路制造技术奠定了基础。
把电路所需要的晶体管、二极管、电阻器和电容器等元件用一定工艺方式制作在一小块硅片、玻璃或陶瓷衬底上,再用适当的工艺进行互连,然后封装在一个管壳内,使整个电路的体积大大缩小,引出线和焊接点的数目也大为减少。集成的设想出现在50年代末和60年代初,是采用硅平面技术和薄膜与厚膜技术来实现的。
电子集成技术按工艺方法分为以硅平面工艺为基础的单片集成电路、以薄膜技术为基础的薄膜集成电路和以丝网印刷技术为基础的厚膜集成电路。
比较
单片集成电路和薄膜与厚膜集成电路这三种工艺方式各有特点,可以互相补充。通用电路和标准电路的数量大,可采用单片集成电路。需要量少的或是非标准电路,一般选用混合工艺方式,也就是采用标准化的单片集成电路,加上有源和无源元件的混合集成电路。厚膜、薄膜集成电路在某些应用中是互相交叉的。厚膜工艺所用工艺设备比较简易,电路设计灵生产周期短,散热良好,所以在高压、大功率和无源元件公差要求不太苛刻的电路中使用较为广泛。另外,由于厚膜电路在工艺制造上容易实现多层布线,在超出单片集成电路能力所及的较复杂的应用方面,可将大规模集成电路芯片组装成超大规模集成电路,也可将单功能或多功能单片集成电路芯片组装成多功能的部件甚至小的整机。单片集成电路除向更高集成度发展外,也正在向着大功率、线性、高频电路和模拟电路方面发展。不过,在微波集成电路、较大功率集成电路方面,薄膜、厚膜混合集成电路还具有优越性。在具体的选用上,往往将各类单片集成电路和厚膜、薄膜集成工艺结合在一起,特别如精密电阻网络和阻容网络基片粘贴于由厚膜电阻和导带组装成的基片上,装成一个复杂的完整的电路。必要时甚至可配接上个别超小型元件,组成部件或整机。0.2集成电路的发展历史
随着硅平面工艺技术的不断完善和发展,到1958年,诞生了第一块集成电路,也就是小规模集成电路(SSI);到了20世纪60年代中期,出现了中规模集成电路(MSI);20世纪70年代前期又出现了大规模集成电路(LSI);20世纪70年代后期又出现了超大规模集成电路(VLSI);到了20世纪90年代就出现了特大规模集成电路(ULSI)。可以说集成电路的集成度几乎以每年翻一番的速度高速发展。
SSI
(小型集成电路),晶体管数
10~100,门数<10
•
MSI
(中型集成电路),晶体管数
100~1,000,10<门数<100
•
LSI
(大规模集成电路),晶体管数
1,000~100,000,门数>100
•
VLSI
(超大规模集成电路),晶体管数
100,000~
1,000,000ULSI(特大规模集成电路),晶体管数>1,000,000GSI(极大规模集成电路),晶体管数>109
SoC--system-on-a-chip/SIP--systeminpackagingVLSI
集成电路的制作可以分成三个阶段:①硅晶圆片的制作;②集成电路的制作;③集成电路的封装。目前,硅晶圆片(wafer)是以8in(直径200mm)为主,集成电路的设计与制造的最小线宽约为0.25~0.18μm。平均而言,每一个8in硅晶圆片上要制作200-300个芯片面积在2cm2左右的集成电路。
集成电路的制造工艺流程十分复杂,而且不同的种类、不同的功能、不同的结构的集成电路,其制造的工艺流程也不相同。人们通常以最小线宽(或称特征尺寸)、硅晶圆片的直径和动态随机存储器的容量,来评价集成电路制造工艺的发展水平。
在表0-1中列出了从1995年到2010年集成电路的发展情况和展望。年代199519982001200420072010特征尺寸/μm0.350.250.180.130.100.07DRAM容量/bit64M256M1G4G16G64G微处理器尺寸/mm2250300360430520620DRAM尺寸/mm21902804206409601400逻辑电路晶体管密度(晶体管数)/个4M7M13M25M50M90M高速缓冲器(bit/cm2)2M6M20M50M100M300M最大硅晶圆片直径/mm200200300300400400等比例缩小原则Scalingdown由欧洲电子器件制造协会(EECA)、欧洲半导体工业协会(ESIA)、日本电子和信息技术工业协会(JEITA)、韩国半导体工业协会(KSIA)、台湾半导体工业协会(TSIA)和半导体工业协会(SIA)合作完成。器件尺寸下降,芯片尺寸增加互连层数增加掩膜版数量增加工作电压下降ITRS—InternationalTechnologyRoadmapforSemiconductors
预言硅主导的IC技术蓝图器件几何尺寸:Lg,Wg,tox,xj
→×1/k衬底掺杂浓度N
→×k电压Vdd
→×1/k
⇒器件速度→×k芯片密度→×k2器件的等比例缩小原则Constant-fieldScaling-downPrinciplek≈1.4
集成电路的技术发展趋势,是向较大的硅圆晶片及较小的特征尺寸方向发展。这样,可以在其体积不变的情况下,不断增强集成电路的功能,降低使用的成本。但从另一方面看,为了减小特征尺寸,在工艺及设备上的研究和制造方面所花费的成本,也越来越高。一般讲要制造一个可制造的64MBDRAM的生产线,需要投资约10亿美元。
集成电路技术的发展促使集成电路制造设备加工技术的提高,如电子束曝光、软X射线曝光、等离子(或反应离子)刻蚀、离子注入等一系列微细加工技术和计算机辅助工程(CAE)、包括计算机辅助制造(CAM)、计算机辅助测试(CAT)及计算机辅助设计(CAD)等技术也相继得到提高。同时,比如铜引线工艺、低K介质材料等新工艺也引起人们研究的兴趣。
W.ShockleyJ.BardeenW.Brattain1stpointcontacttransistorin1947--byBellLab1956年诺贝尔物理奖点接触晶体管:基片是N型锗,发射极和集电极是两根金属丝。这两根金属丝尖端很细,靠得很近地压在基片上。金属丝间的距离:~50μm1948年W.Shockley提出结型晶体管概念1950年第一只NPN结型晶体管集成电路50年变迁:芯片制造商达到空前水平
据美国《连线》杂志报道,1958年,美国德州仪器公司展示了全球第一块集成电路板,这标志着世界从此进入到了集成电路的时代。集成电路具有体积小、重量轻、寿命长和可靠性高等优点,同时成本也相对低廉,便于进行大规模生产。在近50年的时间里,集成电路已经广泛应用于工业、军事、通讯和遥控等各个领域。用集成电路来装配电子设备,其装配密度相比晶体管可以提高几十倍至几千倍,设备的稳定工作时间也可以大大提高。以下为集成电路50年来的简要发展和应用情况:
1、第一块集成电路板几根零乱的电线将五个电子元件连接在一起,就形成了历史上第一个集成电路。虽然它看起来并不美观,但事实证明,其工作效能要比使用离散的部件要高得多。历史上第一个集成电路出自杰克-基尔比之手。当时,晶体管的发明弥补了电子管的不足,但工程师们很快又遇到了新的麻烦。为了制作和使用电子电路,工程师不得不亲自手工组装和连接各种分立元件,如晶体管、二极管、电容器等。很明显,这种做法是不切实际的。于是,基尔比提出了集成电路的设计方案。第一块单片IC2、半导体设备与铅结构模型其实,在20世纪50年代,许多工程师都想到了这种集成电路的概念。美国仙童公司联合创始人罗伯特-诺伊斯就是其中之一。在基尔比研制出第一块可使用的集成电路后,诺伊斯提出了一种“半导体设备与铅结构”模型。1960年,仙童公司制造出第一块可以实际使用的单片集成电路。诺伊斯的方案最终成为集成电路大规模生产中的实用技术。基尔比和诺伊斯都被授予“美国国家科学奖章”。他们被公认为集成电路共同发明者。
3、分子电子计算机虽然集成电路优点明显,但仍然有很长时间没有在工业部门得到实际应用。相反,它却首先引起了军事及政府部门的兴趣。1961年,德州仪器为美国空军研发出第一个基于集成电路的计算机,即所谓的“分子电子计算机”。美国宇航局也开始对该技术表示了极大兴趣。当时,“阿波罗导航计算机”和“星际监视探测器”都采用了集成电路技术。4、集成电路应用于导弹制导系统1962年,德州仪器为“民兵-I”型和“民兵-II”型导弹制导系统研制22套集成电路。这不仅是集成电路第一次在导弹制导系统中使用,而且是电晶体技术在军事领域的首次运用。到1965年,美国空军已超越美国宇航局,成为世界上最大的集成电路消费者。5、戈登-摩尔提出摩尔定律
英特尔公司的联合创始人之一戈登-摩尔也在集成电路的早期发展进程中扮演着重要的角色。早在1965年,摩尔就曾对集成电路的未来作出预测。他推算,到1975年每块芯片上集成的电子元件数量将达到65000个。而实际上,每过12个月芯片上集成的电子元件数量都会翻一番。这就是现在我们所了解的计算机“摩尔定律”。摩尔定律(Moore’sLaw)技术节点特征尺寸DRAM硅集成电路二年(或二到三年)为一代,集成度翻一番,工艺线宽约缩小30%,芯片面积约增1.5倍,IC工作速度提高1.5倍6、“Busicom141-PF”计算机在20世纪60年代,计算机通常都是笨重的庞然大物。集成电路的出现改变了计算机这一形象。1969年,英特尔公司为日本计算机公司最新研发的“Busicom141-PF”计算机设计12块芯片。但英特尔公司的工程师泰德-霍夫等人却根据日本公司的需求提出了另一套设计方案。于是诞生了历史上第一个微处理器--4004。7、英特尔4004微处理器随着历史的前进,集成电路早已让路于微处理器。英特尔公司的4004微处理器虽然并不是首个商业化的微处理器,但却是第一个在公开市场上出售的计算机元件。据霍夫介绍,4004微处理器的计算能力其实并不输于世界上第一台计算机ENIAC(电子数字积分计算机),但却比ENIAC小得多。ENIAC使用了18000个真空管,占据了整个房间。8、“普尔萨”数字手表继便携式计算器和数字手表之后,集成电路的下一个主要商业应用也许就是“手腕计算机”。“Microma”液晶数字表是应用“系统芯片”技术的首款产品。汉米尔顿公司推出的“普尔萨”是世界上第一只数字手表。1970年,普尔萨刚刚上市时售价为2100美元。
9、集成电路工艺突飞猛进如今,芯片制造商(如英特尔、AMD等公司)生产的芯片上所集成的晶体管数量已达到了空前的水平,而且每个晶体管的体积变得非常微小。比如,一个针尖上可以容纳3000万个45毫微米大小的晶体管。此外,现在的处理器上单个晶体管的价格仅仅是1968年晶体管价格的百万分之一。ExplosiveGrowthofComputingPowerPentiumIV1sttransistor19471stelectroniccomputerENIAC(1946)VacuumTuber1stcomputer(1832)Macroelectronics Microelectronics Nanoelectronics2003Itanium2®19714004®2001PentiumIV®1989386®2300134000410M42M1991486®1.2Mtransistor/chip10µm 1µm 0.1µm transistorsizeHumanhairRedbloodcellBacteriaVirusNocompletetechnologicalsolutionavailable!!!PhysicalgatelengthinnmYearGateSourceDrainsilicidemetalmetalchannelgateoxideWearehere.ITRS,theInternationalTechnologyRoadmapforSemiconductors:SourceDrain1.世界集成电路的发展历史
1947年:贝尔实验室肖克莱等人发明了晶体管,这是微电子技术发展中第一个里程碑;
1950年:结型晶体管诞生;
1950年:ROhl和肖特莱发明了离子注入工艺;
1951年:场效应晶体管发明;
1956年:CSFuller发明了扩散工艺;
1958年:仙童公司RobertNoyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史;
1960年:HHLoor和ECastellani发明了光刻工艺;
1962年:美国RCA公司研制出MOS场效应晶体管;1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺;
1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍;
1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列(50门);
1967年:应用材料公司(AppliedMaterials)成立,现已成为全球最大的半导体设备制造公司;
1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现;
1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明;
1974年:RCA公司推出第一个CMOS微处理器1802;
1976年:16kbDRAM和4kbSRAM问世;
1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临;
1979年:Intel推出5MHz8088微处理器,之后,IBM基于8088推出全球第一台PC;
1981年:256kbDRAM和64kbCMOSSRAM问世;
1984年:日本宣布推出1MbDRAM和256kbSRAM;
1985年:80386微处理器问世,20MHz;
1988年:16MDRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(ULSI)阶段;
1989年:1MbDRAM进入市场;
1989年:486微处理器推出,25MHz,1μm工艺,后来50MHz芯片采用0.8μm工艺;1992年:64M位随机存储器问世;
1993年:66MHz奔腾处理器推出,采用0.6μm工艺;
1995年:PentiumPro,133MHz,采用0.6-0.35μm工艺;
1997年:300MHz奔腾Ⅱ问世,采用0.25μm工艺;
1999年:奔腾Ⅲ问世,450MHz,采用0.25μm工艺,后采用0.18μm工艺;
2000年:1GbRAM投放市场;
2000年:奔腾4问世,1.5GHz,采用0.18μm工艺;
2001年:Intel宣布2001年下半年采用0.13μm工艺。
2003年:奔腾4E系列推出,采用90nm工艺。2005年:intel酷睿2系列上市,采用65nm工艺。2007年:基于全新45纳米High-K工艺的intel酷睿2E7/E8/E9上市。2009年:intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺2011年:intelP127022纳米近日Intel布了旗下未来处理器生产工艺蓝图,其中首先将在年底登场的22nm工艺将在多个工厂实现量产,而在2013年出现14nm工艺技术,到2015年则会有10nm工艺。2013年:P127214纳米2015年:P127410纳米2.我国集成电路的发展历史
我国集成电路产业诞生于六十年代,共经历了三个发展阶段:
1965年-1978年:以计算机和军工配套为目标,以开发逻辑电路为主要产品,初步建立集成电路工业基础及相关设备、仪器、材料的配套条件;
1978年-1990年:主要引进美国二手设备,改善集成电路装备水平,在“治散治乱”的同时,以消费类整机作为配套重点,较好地解决了彩电集成电路的国产化;
1990年-2000年:以908工程、909工程为重点,以CAD为突破口,抓好科技攻关和北方科研开发基地的建设,为信息产业服务,集成电路行业取得了新的发展。中国华大集成电路设计中心
2001年03月,国务院第300号令颁布《集成电路布图设计保护条例》,2001年10月1日起施行;2001年09月,国务院发布国办函[2001]51号函,对集成电路产业政策作了补充和完善;2002年07月,科技部批复国家重大科技专项“超大规模集成电路和软件(软件部分)”,该专项正式启动;注释:该软件专项的总体目标为研制包括系统软件(操作系统、数据库管理软件)、中间件平台和重大应用软件在内的中国自主网络软件核心平台。该专项国拨经费6亿元。其中操作系统2.5亿元,数据库管理系统2亿元,重大应用共性软件及示范1亿元,软件技术标准体系和软件技术创新体系5000万元。2002年10月,香港华润集团完成整体收购无锡华晶电子集团,标志着集成电路国企改组改制步伐加快;2003年,国务院科教领导小组批准实施国家科技重大专项——集成电路与软件重大专项,并实施了“国家集成电路人才培养基地”计划;2003年10月,教育部、科技部批准九所大学为首批国家集成电路人才培养基地的建设单位;注释:首批基地为清华、北大、浙大、复旦、西安电子科技大学、上海交大、东南、电子科技大学、华中科大。2004年8月,教育部又批准了北航、西安交大、哈工大、同济、华南理工和西北工大等六所高校为人才培养基地的建设单位,并同意北工大和中山大学开展筹建工作。至此,国家集成电路人才培养基地的布局初步形成。整个计划的目标是通过6-8年的努力,培养4万名集成电路设计人才和1万名集成电路工艺人才。
2003年12月,中国集成电路总产量首次突破100亿块;2004年08月,教育部批准六所高校为国家集成电路人才培养基地的建设单位,并同意北京工业大学和中山大学开展筹建工作;2004年09月,中芯国际12英寸芯片厂在北京投产,标志中国IC制程进入300mm时代;注释:中芯国际总部位于上海,提供0.35um到45nm芯片代工与技术服务。目前,该公司在上海建有一座300mm芯片厂和三座200mm芯片厂;在北京建有两座300mm芯片厂,在天津建有一座200mm芯片厂,在深圳有一座200mm芯片厂在兴建中,在成都拥有一座封装测试厂。此外,中芯代成都成芯半导体制造有限公司经营管理一座200mm芯片厂,也代武汉新芯集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业防中暑应急预案(10篇)
- 幼儿演讲稿锦集10篇
- 企业财务总监工作总结
- DB12T 598.7-2015 天津市建设项目用地控制指标 第7部分:公益性科研机构项目
- 感恩母亲演讲稿集合五篇
- 学生的实习报告三篇
- 高等数学教程 上册 第4版 习题及答案 P102 第4章 导数的应用
- 影响华法林抗凝效果的药物
- 舞蹈内容课件教学课件
- 部编版历史九年级上册第一单元 第2课《古代两河流域》说课稿
- 2022年乌鲁木齐市法院书记员招聘考试题库及答案解析
- 应急预案救援物资检查表
- 安全隐患排查记录表
- 浙美版美术四上第5课《美术档案袋》课件1
- 初中 初一 心理健康 我有我气质 课件
- DB12T 907-2019 牛粪制备卧床垫料技术规程
- 五年级数学下册课件 - 6 圆的认识练习 - 苏教版(共25张PPT)
- 小学信息技术 辽宁师大版 五年级上册 第4课 漂亮的艺术字《漂亮的艺术字》课件 课件
- 宫外孕手术配合
- 体育主题酒店案例
- 培智学校各科课程标准
评论
0/150
提交评论