版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年辽宁省抚顺市第五十九中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是(
)A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(0,1)或(1,2)内有零点C.函数f(x)在区间[2,16)内无零点D.函数f(x)在区间(1,16)内无零点参考答案:C【考点】函数零点的判定定理.【专题】计算题;函数的性质及应用.【分析】可判断函数f(x)唯一的一个零点在区间(0,2)内,从而解得.【解答】解:∵函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,∴函数f(x)唯一的一个零点在区间(0,2)内,∴函数f(x)在区间[2,16)内无零点,故选:C.【点评】本题考查了函数的零点的位置的判断与应用.2.函数在R上单调递增,且,则实数的取值范围是(
)A
.
B
.
C.
D..参考答案:B略3.不等式恒成立,则的取值范围为(
)A. B.C.
D.参考答案:D4.已知函数在区间上的最小值是-2,则的最小值等于A.
B.
C.2
D.3参考答案:B略5.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为,则勾与股的比为(
)A. B. C. D.参考答案:B【分析】分别求解出小正方形和大正方形的面积,可知面积比为,从而构造方程可求得结果.【详解】由图形可知,小正方形边长为小正方形面积为:,又大正方形面积为:,即:解得:本题正确选项:【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.6.已知函数,是奇函数,则(
)A.f(x)在上单调递减
B.f(x)在上单调递减C.f(x)在上单调递增
D.f(x)在上单调递增参考答案:A由题意得,且是奇函数,所以,所以又,所以,代入得,下求增区间,,当k=1时,,所以C,D错。下求减区间,当k=0时,而所以B错,A对,选A.
7.在△ABC中,已知A=60°,a=,b=,则B等于()A.45°或135° B.60° C.45° D.135°参考答案:C【考点】正弦定理.【分析】由正弦定理求出sinB===.从而由0<B<π即可得到B=45°或135°,又由a=>b=,可得B<A,从而有B,可得B=45°.【解答】解:由正弦定理知:sinB===.∵0<B<π∴B=45°或135°又∵a=>b=,∴B<A,∴B∴B=45°故选:C.【点评】本题主要考察了正弦定理的应用,属于基本知识的考查.8.圆(x+2)2+y2=5关于y轴对称的圆的方程为()A.(x-2)2+y2=5
B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5
D.x2+(y+2)2=5参考答案:A9.执行如图所示的程序框图,则输出的a值为()A.﹣3 B. C.﹣ D.2参考答案:D【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当i=1时,不满足退出循环的条件,执行循环体后,a=﹣3,i=2;当i=2时,不满足退出循环的条件,执行循环体后,a=﹣,i=3;当i=3时,不满足退出循环的条件,执行循环体后,a=,i=4;当i=4时,不满足退出循环的条件,执行循环体后,a=2,i=5;当i=5时,不满足退出循环的条件,执行循环体后,a=﹣3,i=6;a的值是以4为周期的循环,由2016÷4=504,故当i=2017时,满足退出循环的条件,故输出的a值为2,故选:D.10.若正项数列{an}的前n项和为Sn,满足,则(
)A. B. C. D.参考答案:A【分析】利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。【详解】当时,解得,由于为正项数列,故,由,所以,由,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式故答案选A【点睛】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性。二、填空题:本大题共7小题,每小题4分,共28分11.在空间直角坐标系中,已知A(1,0,-3),B(4,-2,1),则=___________.参考答案:。12.已知幂函数y=f(x)的图象过点,则f(﹣2)=
.参考答案:【考点】幂函数的图像;函数的值.【专题】待定系数法.【分析】设出幂函数的解析式,由图象过(,8)确定出解析式,然后令x=﹣2即可得到f(﹣2)的值.【解答】解:设f(x)=xa,因为幂函数图象过,则有8=,∴a=﹣3,即f(x)=x﹣3,∴f(﹣2)=(﹣2)﹣3=﹣故答案为:﹣【点评】考查学生会利用待定系数法求幂函数的解析式.会根据自变量的值求幂函数的函数值.13.若,且,则向量与的夹角为
.参考答案:略14.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为
cm2.参考答案:4【考点】扇形面积公式.【专题】计算题.【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.【解答】解:设扇形的半径为:R,所以,2R+2R=8,所以R=2,扇形的弧长为:4,半径为2,扇形的面积为:=4(cm2).故答案为:4.【点评】本题是基础题,考查扇形的面积公式的应用,考查计算能力.15.求的值为________.参考答案:44.5【分析】通过诱导公式,得出,依此类推,得出原式的值.【详解】,,同理,,故答案为44.5.【点睛】本题主要考查了三角函数中的诱导公式的运用,得出是解题的关键,属于基础题.16.函数,若对任意恒成立,则实数a的取值范围是______________.参考答案:原问题等价于在区间上恒成立,则,结合二次函数的性质可知,当时,,则实数的取值范围是,表示为区间形式即.
17.已知集合,则集合的非空真子集的个数为
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,函数.(1)若的定义域为R,求实数m的取值范围;(2)当时,求函数的最小值;(3)是否存在非负实数m,n,使得函数的定义域为[m,n],值域为,若存在,求出m,n的值;若不存在,则说明理由.参考答案:(1),∴,令,则当的定义域为,不成立;当时,的定义域为综上所述
(2)对称轴为,.19.(本小题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.参考答案:解:(1)∵f(x)为二次函数且f(0)=f(2),∴对称轴为x=1.又∵f(x)最小值为1,∴可设f(x)=a(x-1)2+1
(a>0)∵f(0)=3,∴a=2,∴f(x)=2(x-1)2+1,即f(x)=2x2-4x+3.(2)由条件知2a<1<a+1,∴0<a<.略20.(12分)某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14],第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计学校900名学生中,成绩属于第四组的人数;(3)请根据频率分布直方图,求样本数据的众数和中位数.参考答案:(Ⅰ)样本在这次百米测试中成绩优秀的人数=(人)
-----------------(4分)(Ⅱ)学校900名学生中,成绩属于第四组的人数=(人)
----------------(8分)(Ⅲ)由图可知众数落在第三组,是因为数据落在第一、二组的频率数据落在第一、二、三组的频率所以中位数一定落在第三组中.假设中位数是,所以解得中位数
-----------------------------------------(12分)21.计算:(1)log225?log32?log59;(2)(2)0+2﹣2×(2)﹣0.250.5.参考答案:【考点】对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度私人土地买卖合同范本:违约责任详解
- 装修工程验收流程合同样本
- 荒田承包合同
- 面包店装修质量保证金合同
- 酒类营销合同
- 汽车租赁服务合同与事故免责条款
- 音乐节演出策划与执行合同
- 2024年工业废水处理新技术研发合同
- 医疗器械设备采购及售后服务合同协议
- 软件外包服务合同
- 基于深度学习的医学影像识别与分析
- 部编版《道德与法治》六年级下册教材分析万永霞
- 粘液腺肺癌病理报告
- 铸牢中华民族共同体意识自评报告范文
- 巡察档案培训课件
- 物流营销(第四版) 课件 第六章 物流营销策略制定
- 上海高考英语词汇手册列表
- PDCA提高患者自备口服药物正确坚持服用落实率
- 上海石油化工股份有限公司6181乙二醇装置爆炸事故调查报告
- 家谱人物简介(优选12篇)
- 2023年中智集团下属中智股份公司招聘笔试题库及答案解析
评论
0/150
提交评论