2024届浙江省台州市“海山教育联盟”九年级数学第一学期期末监测模拟试题含解析_第1页
2024届浙江省台州市“海山教育联盟”九年级数学第一学期期末监测模拟试题含解析_第2页
2024届浙江省台州市“海山教育联盟”九年级数学第一学期期末监测模拟试题含解析_第3页
2024届浙江省台州市“海山教育联盟”九年级数学第一学期期末监测模拟试题含解析_第4页
2024届浙江省台州市“海山教育联盟”九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省台州市“海山教育联盟”九年级数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于抛物线,下列说法中错误的是()A.顶点坐标为B.对称轴是直线C.当时,随的增大减小D.抛物线开口向上2.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A. B. C. D.3.如图,△ABC是一张周长为18cm的三角形纸片,BC=5cm,⊙O是它的内切圆,小明用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线剪下△AMN,则剪下的三角形的周长为()A. B. C. D.随直线的变化而变化4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个 B.3个 C.4个 D.5个5.以下五个图形中,是中心对称图形的共有()A.2个 B.3个 C.4个 D.5个6.下列式子中,为最简二次根式的是()A. B. C. D.7.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是A. B. C. D.8.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.9.某林业部门要考察某幼苗的成活率,于是进行了试验,下表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数400150035007000900014000成活数369133532036335807312628成活的频率09230.89009150.9050.8970.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率10.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为()A.64 B.72 C.80 D.96二、填空题(每小题3分,共24分)11.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则______.12.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.13.某校九年级学生参加体育测试,其中10人的引体向上成绩如下表:完成引体向上的个数78910人数1234这10人完成引体向上个数的中位数是___________14.将抛物线y=x2+2x向右平移1个单位后的解析式为_____.15.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.16.一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是__________L.17.方程2x2-x=0的根是______.18.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.三、解答题(共66分)19.(10分)如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).20.(6分)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DBEC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.21.(6分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.22.(8分)已知,,,(如图),点,分别为射线上的动点(点C、E都不与点B重合),连接AC、AE使得,射线交射线于点,设,.(1)如图1,当时,求AF的长.(2)当点在点的右侧时,求关于的函数关系式,并写出函数的定义域.(3)连接交于点,若是等腰三角形,直接写出的值.23.(8分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.24.(8分)抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)25.(10分)某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的长.(结果保留根号)26.(10分)某校九年级(1)班甲、乙两名同学在5次引体向上测试中的有效次数如下:甲:8,8,7,8,1.乙:5,1,7,10,1.甲、乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲880.4乙13.2根据以上信息,回答下列问题:(1)表格中_______,_______,_______.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是_______________________________________.班主任李老师根据去年比赛的成绩(至少1次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是_______________________________________.(3)乙同学再做一次引体向上,次数为n,若乙同学6次引体向上成绩的中位数不变,请写出n的最小值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】A.将抛物线一般式化为顶点式即可得出顶点坐标,由此可判断A选项是否正确;B.根据二次函数的对称轴公式即可得出对称轴,由此可判断B选项是否正确;C.由函数的开口方向和顶点坐标即可得出当时函数的增减性,由此可判断C选项是否正确;D.根据二次项系数a可判断开口方向,由此可判断D选项是否正确.【题目详解】,∴该抛物线的顶点坐标是,故选项A正确,对称轴是直线,故选项B正确,当时,随的增大而增大,故选项C错误,,抛物线的开口向上,故选项D正确,故选:C.【题目点拨】本题考查二次函数的性质.对于二次函数y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小.在本题中能将二次函数一般式化为顶点式(或会用顶点坐标公式计算)得出顶点坐标是解决此题的关键.2、D【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【题目详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的长为,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=故选:D.【题目点拨】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.3、B【分析】如图,设E、F、G分别为⊙O与BC、AC、MN的切点,利用切线长定理得出BC=BD+CF,DM=MG,FN=GN,AD=AF,进而可得答案.【题目详解】设E、F、G分别为⊙O与BC、AC、MN的切点,∵⊙O是△ABC的内切圆,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵MN与⊙O相切于G,∴DM=MG,FN=GN,∵△ABC的周长为18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周长=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故选:B.【题目点拨】本题考查切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;熟练掌握定理是解题关键.4、A【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴上得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【题目详解】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴上,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.5、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【题目详解】解:从左起第2、4、5个图形是中心对称图形.故选:B.【题目点拨】本题考查了中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.6、B【分析】利用最简二次根式定义判断即可.【题目详解】A、原式,不符合题意;B、是最简二次根式,符合题意;C、原式,不符合题意;D、原式,不符合题意;故选B.【题目点拨】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.7、B【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、是轴对称图形,不是中心对称图形;

B、不是轴对称图形,是中心对称图形;

C、是轴对称图形,也是中心对称图形;

D、不是轴对称图形,也不是中心对称图形.

故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图重合.8、C【解题分析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.9、B【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率即可得到答案.【题目详解】解:由此估计这种幼苗在此条件下成活的概率约为0.9,故A选项正确;如果在此条件下再移植这种幼苗20000株,则大约成活18000株,故B选项错误;可以用试验次数累计最多时的频率作为概率的估计值,故C选项正确;在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,故D选项正确.故选:B.【题目点拨】本题主要考查的是利用频率估计概率,大量反复试验下频率稳定值即概率,掌握这个知识点是解题的关键.10、C【分析】根据题意得出BE:CE=1:4,由DE∥AC得出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【题目详解】∵S△BDE=4,S△CDE=16,

∴S△BDE:S△CDE=1:4,

∵△BDE和△CDE的点D到BC的距离相等,∴,∴,∵DE∥AC,

∴△DBE∽△ABC,

∴S△DBE:S△ABC=1:25,∴S△ABC=100

∴S△ACD=S△ABC-S△BDE-S△CDE=100-4-16=1.

故选C.【题目点拨】考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.二、填空题(每小题3分,共24分)11、【解题分析】利用位似图形的性质结合位似比等于相似比得出答案.【题目详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且,,则,故答案为:.【题目点拨】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.12、y1<y1【分析】由k=-1可知,反比例函数y=﹣的图象在每个象限内,y随x的增大而增大,则问题可解.【题目详解】解:∵反比例函数y=﹣中,k=﹣1<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(1,y1)在反比例函数y=﹣的图象上,1>1,∴y1<y1,故答案为y1<y1.【题目点拨】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k的符号确定,在各个象限内函数的增减性解决问题.13、1【分析】将数据由小排到大,再找到中间的数值,即可求得中位数,奇数个数中位数是中间一个数,偶数个数中位数是中间两个数的平均数。【题目详解】解:将10个数据由小到大排序:7、8、8、1、1、1、10、10、10、10,处于这组数据中间位置的数是1、1,那么由中位数的定义可知,这组数据的中位数是(1+1)÷2=1.

所以这组同学引体向上个数的中位数是1.

故答案为:1.【题目点拨】本题为统计题,考查中位数的意义,解题的关键是准确认识表格.14、y=x2﹣1.【分析】通过配方法先求出原抛物线的顶点坐标,继而得到平移后新抛物线的顶点坐标,然后利用顶点式即可求得新抛物线的解析式.【题目详解】∵y=x2+2x=(x+1)2-1,∴原抛物线的顶点为(-1,-1),∵将抛物线y=x2+2x向右平移1个单位得到新的抛物线,∴新抛物线的顶点为(0,-1),∴新抛物线的解析式为y=x2-1,故答案为:y=x2-1.【题目点拨】本题考查了抛物线的平移,得到原抛物线与新抛物线的顶点坐标是解题的关键.15、a≤且a≠1.【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.【题目详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案为a≤且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.16、1【分析】设每次倒出液体xL,第一次倒出后还有纯药液(40﹣x),药液的浓度为,再倒出xL后,倒出纯药液•x,利用40﹣x﹣•x就是剩下的纯药液10L,进而可得方程.【题目详解】解:设每次倒出液体xL,由题意得:40﹣x﹣•x=10,解得:x=60(舍去)或x=1.答:每次倒出1升.故答案为1.【题目点拨】本题考查一元二次方程的应用.17、x1=,x2=0【分析】利用因式分解法解方程即可.【题目详解】2x2-x=0,x(2x-1)=0,x=0或2x-1=0,∴x1=,x2=0.故答案为x1=,x2=0.【题目点拨】本题考查了一元二次方程的解法-因式分解法,熟练运用因式分解法将方程化为x(2x-1)=0是解决问题的关键.18、4【解题分析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.三、解答题(共66分)19、(1)见解析,(2)见解析,(3)π【解题分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【题目详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为π.【题目点拨】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.20、(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【题目详解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【题目点拨】考点:几何变换综合题;平行线平行线分线段成比例.21、(1)证明见解析;(2).【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【题目详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积22、(1);(2);(3)或或.【分析】过点作于N,利用∠B的余弦值可求出BN的长,利用勾股定理即可求出AN的长,根据线段的和差关系可得CN的长,利用勾股定理可求出AC的长,根据AD//BC,AD=BC即可证明四边形ABCD是平行四边形,可得∠B=∠D,进而可证明△ABC∽△ADF,根据相似三角形的性质即可求出AF的长;(2)根据平行线的性质可得,根据等量代换可得,进而可证明△ABC∽△ABE,根据相似三角形的性质可得,可用x表示出BE、CE的长,根据平行线分线段成比例定理可用x表示出的值,根据可得y与x的关系式,根据x>0,CE>0即可确定x的取值范围;(3)分PA=PD、AP=AD和AD=PD三种情况,根据BE=及线段的和差关系,分别利用勾股定理列方程求出x的值即可得答案.【题目详解】(1)如图,过点作于N,∵AB=5,,∴在中,=5×=3,∴AN===4,∵BC=x=4,∴CN=BC-BN=4-3=1,在中,,∵AD=4,BC=x=4,∴AD=BC,∵,∴四边形为平行四边形,∴,又∵,∴△ABC∽△ADF,∴,∴解得:,(2)∵,∴,∵,∴,又∵∠B=∠B,∴△ABC∽△ABE,∴,∴,∵AD//BC,∴,∴,∵x>0,CE=>0,∴0<x<5,∴,(3)①如图,当PA=PD时,作AH⊥BM于H,PG⊥AD于G,延长GP交BM于N,∵PA=PD,AD=4,∴AG=DG=2,∠ADB=∠DAE,∵AD//BE,∴GN⊥BE,∠DAE=∠AEB,∠ADB=∠DBE,∴∠DBE=∠AEB,∴PB=PE,∴BN=EN=BE=,∵,AB=5,∴BH=AB·cos∠ABH=3,∵AH⊥BM,GN⊥MB,GN⊥AD,∴∠AHN=∠GNH=∠NGA=90°,∴四边形AHNG是矩形,∴HN=AG=2,∴BN=BH+HN=3+2=5,∴=5,解得:x=.②如图,当AP=AD=4时,作AH⊥BM于H,∴∠ADB=∠APD,∵AD//BM,∴∠ADB=∠DBC,∵∠APD=∠BPE,∴∠DBC=∠BPE,∴BE=PE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∴在Rt△AEH中,(4+)2=42+(3-)2,解得:x=,③如图,当AD=PD=4时,作AH⊥BM于H,DN⊥BM于N,∴∠DAP=∠DPA,∵AD//BM,∴∠DAP=∠AEB,∵∠APD=∠BPE,∴∠BPE=∠AEB,∴BP=BE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∵AD//BM,AH⊥BM,DN⊥BM,∴四边形AHND是矩形,∴DN=AH=4,HN=AD=4,中Rt△BND中,(4+)2=42+(4+3)2,解得:x=,综上所述:x的值为或或.【题目点拨】本题考查相似三角形的综合,熟练掌握锐角三角函数的定义、平行线的性质、等腰三角形的性质及相似三角形的判定与性质,灵活运用分类讨论的思想是解题关键.23、(1)t=1;(2)t=2.4或;(3)△PQD的面积不能为1,理由见解析.【分析】(1)△PQD的两直角边分别用含t的代数式表示,由△PQD的面积为5得到关于t的方程,由此可解得t的值;(2)设△PQD与相似△ABC,由图形形状考虑可知有两种可能性,对两种可能性分别给予讨论可以求得答案;(3)与(1)类似,可以用含t的表达式表示△PQD的面积,令其等于1,由所得方程解的情况可以作出判断.【题目详解】因为四边形ABCD是矩形,所以AB=CD=6,BC=AD=8,(1)S△PQD=解得:t1=1t2=5(舍去)(2)①当时△PDQ~△ABC即得t=2.4②当时△PQD̰~△CBA即得;(3)△PQD的面积为1时,,此方程无实数根,即△PQD的面积不能为1.【题目点拨】本题综合考查三角形相似、面积计算与动点几何问题,利用方程的思想方法解题是关键所在.24、(1)①b=2;②△CBE面积的最大值为1,此时E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①将点B(2,0)代入y=﹣x2+x+b即可求b;②设E(m,﹣m2+m+2),求出BC的直线解析式为y=﹣x+2,和过点E与BC垂直的直线解析式为y=x﹣m2+2,求出两直线交点F,则EF最大时,△CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,﹣t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:①当CM和BD为平行四边形的对角线时,=,=0,解得b=﹣1+;②当BM和CD为平行四边形的对角线时,=,=,b无解;③当BC和MD为平行四边形的对角线时,=,=,解得b=或b=﹣(舍).【题目详解】解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论