版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南大附属中学数学九上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知是关于的反比例函数,则()A. B. C. D.为一切实数2.如图,中,且,若点在反比例函数的图象上,点在反比例函数的图象上,则的值为()A. B. C. D.3.第一中学九年级有340名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同 B.不可能有两人生日相同C.可能有两人生日相同,且可能性较大 D.可能有两人生日相同,但可能性较小4.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或25.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.6.计算:x(1﹣)÷的结果是()A. B.x+1 C. D.7.已知是单位向量,且,那么下列说法错误的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣8.下列四个图形是中心对称图形().A. B. C. D.9.一件商品的原价是100元,经过两次降价后价格为81元,设每次降价的百分比都是x,根据题意,下面列出的方程正确的是()A. B. C. D.10.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交 B.相切 C.相离 D.无法确定11.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A. B. C. D.12.如下所示的4组图形中,左边图形与右边图形成中心对称的有()A.1组 B.2组 C.3组 D.4组二、填空题(每题4分,共24分)13.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.14.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.15.一元二次方程(x﹣5)(x﹣7)=0的解为_____.16.已知一次函数与反比例函数的图象交于点,则________.17.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则线段ON的长为_____.18.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为______.三、解答题(共78分)19.(8分)如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=1.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线=.20.(8分)(1)计算:sin230°+cos245°(2)解方程:x(x+1)=321.(8分)如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠BAO=30°,AB=BO,反比例函数y=(x<0)的图象经过点A(1)求∠AOB的度数(2)若OA=,求点A的坐标(3)若S△ABO=,求反比例函数的解析式22.(10分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.23.(10分)用配方法解方程:24.(10分)小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园.围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG.若整个花园ABCD(AB>BC)的面积是30m2,求HG的长.25.(12分)如图所示的直面直角坐标系中,的三个顶点坐标分别为,,.(1)将绕原点逆时针旋转画出旋转后的;(2)求出点到点所走过的路径的长.26.在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F.求证:四边形AECF是菱形.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意得,,即可解得m的值.【题目详解】∵是关于的反比例函数∴解得故答案为:B.【题目点拨】本题考查了反比例函数的性质以及定义,掌握反比例函数的指数等于是解题的关键.2、D【分析】要求函数的解析式只要求出点B的坐标就可以,设点A的坐标是,过点A、B作AC⊥y轴、BD⊥y轴,分别于C、D.根据条件得到△ACO∽△ODB,利用相似三角形对应边成比例即可求得点B的坐标,问题即可得解.【题目详解】如图,过点A,B作AC⊥y轴,BD⊥y轴,垂足分别为C,D,设点A的坐标是,
则,
∵点A在函数的图象上,∴,∵∠AOB=90°,
∴∠AOC+∠BOD=∠AOC+∠CAO=90°,
∴∠CAO=∠BOD,
∴,∴∴,
∴,
∵点B在反比例函数的图象上,
∴.故选:D【题目点拨】本题是反比例函数与几何的综合,考查了求函数的解析式的问题以及相似三角形的判定和性质,能够把求反比例函数的解析式转化为求点的坐标的问题是解题的关键.3、C【分析】依据可能性的大小的概念对各选项进行逐一分析即可.【题目详解】A.因为一年有365天而某学校只有340人,所以至少有两名学生生日相同是随机事件.故本选项错误;B.两人生日相同是随机事件,故本选项错误;C.因为320365=6473>50%,所以可能性较大.正确;D.由C可知,可能性较大,故本选项错误.故选:C.【题目点拨】本题考查了可能性的大小,也考查了我们对常识的了解情况.4、D【分析】当a=b时,可得出=2;当a≠b时,a、b为一元二次方程x2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入=中即可求出结论.【题目详解】当a=b时,=1+1=2;
当a≠b时,∵a、b满足a2-6a+2=0,b2-6b+2=0,
∴a、b为一元二次方程x2-6x+2=0的两根,
∴a+b=6,ab=2,
∴==1.
故选:D.【题目点拨】此题考查根与系数的关系,分a=b及a≠b两种情况,求出的值是解题的关键.5、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【题目详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【题目点拨】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.6、C【分析】直接利用分式的性质化简进而得出答案.【题目详解】解:原式==.故选:C.【题目点拨】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.7、C【题目详解】解:∵是单位向量,且,,∴,,,,故C选项错误,故选C.8、C【分析】根据中心对称图形的概念对各选项分析判断即可得解.【题目详解】A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.【题目点拨】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、B【分析】原价为100,第一次降价后的价格是100×(1-x),第二次降价是在第一次降价后的价格的基础上降价的,第二次降价后的价格为:100×(1-x)×(1-x)=100(1-x)2,则可列出方程.【题目详解】设平均每次降价的百分比为x,根据题意可得:100(1-x)2=81故选:B.【题目点拨】本题主要考查了一元二次方程的增长率问题,需注意第二次降价是在第一次降价后的价格的基础上降价的.10、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【题目详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【题目点拨】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.11、B【解题分析】试题解析:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB=.故选B.12、C【解题分析】试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.①②③是只是中心对称图形,④只是轴对称图形,故选C.考点:本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.二、填空题(每题4分,共24分)13、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【题目详解】解:如图所示,∵四边形MEGH为正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面积:∴阴影部分的面积:故答案为:.【题目点拨】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.14、【分析】根据反比例函数的性质:当k>0时函数图像的每一支上,y随x的增大而减少;当k<0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k<0即可.【题目详解】因为反比例函数的图象在每一象限内,y随x的增大而增大,所以k<0故答案为:【题目点拨】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键.15、x1=5,x2=7【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【题目详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【题目点拨】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.16、1【分析】先把P(a−2,3)代入y=2x−3,求得P的坐标,然后根据待定系数法即可求得.【题目详解】∵一次函数y=2x−3经过点P(a−2,3),∴3=2(a−2)−3,解得a=5,∴P(3,3),∵点P在反比例函数的图象上,∴k=3×3=1,故答案为1.【题目点拨】本题考查了一次函数和反比例函数的交点问题,求得交点坐标是解题的关键.17、1.【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,再求出AH,MH,MB,CH,CO,然后证明△CON∽△CHM,再利用相似三角形的性质可计算出ON的长.【题目详解】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,MH⊥AC,MB⊥BC∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案为:1.【题目点拨】本题主要考查正方形的性质及相似三角形的判定及性质,掌握正方形的性质及相似三角形的性质是解题的关键.18、x(x+1)+x+1=1.【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,列出方程即可.【题目详解】解:设每轮传染中平均一人传染x人,则第一轮后有x+1人感染,第二轮后有x(x+1)+x+1人感染,由题意得:x(x+1)+x+1=1.故答案为:x(x+1)+x+1=1.【题目点拨】本题主要考查了由实际问题抽象出一元二次方程,掌握一元二次方程是解题的关键.三、解答题(共78分)19、(2)(2)P(,)【题目详解】解:(2)∵OA=2,OC=2,∴A(-2,0),C(0,2).将C(0,2)代入得c=2.将A(-2,0)代入得,,解得b=,∴抛物线的解析式为;(2)如图:连接AD,与对称轴相交于P,由于点A和点B关于对称轴对称,则BP+DP=AP+DP,当A、P、D共线时BP+DP=AP+DP最小.设直线AD的解析式为y=kx+b,将A(-2,0),D(2,2)分别代入解析式得,,解得,,∴直线AD解析式为y=x+2.∵二次函数的对称轴为,∴当x=时,y=×+2=.∴P(,).20、(1);(2)x1=,x2=.【分析】(1)sin30°=,cos45°=,sin230°+cos245°=()2+()2=(2)用公式法:化简得,a=1,b=1,c=-3,b-4ac=13,∴x=.【题目详解】解:(1)原式=()2+()2=;(2)x(x+1)=3,x2+x﹣3=0,∵a=1,b=1,c=﹣3,b﹣4ac=1﹣4×1×(﹣3)=13,∴x==,∴x1=,x2=.【题目点拨】本题的考点是三角函数的计算和解一元二次方程.方法是熟记特殊三角形的三角函数及几种常用的解一元二次方程的方法.21、(1)30°;(2)A(﹣6,);(3)【分析】(1)由题意直接根据等腰三角形的性质进行分析即可;(2)由题意过点A作AC⊥x轴于点C,由∠AOB=30°,解直角三角形可得出AC=2,再由锐角三角函数或勾股定理得出OC=6,即可求得A点的坐标;(3)根据题意设OB=AB=m,根据BA=BO可得出∠ABC=60°,由此可得出AC=m,由S△ABO=,列出关于m的方程,解方程求得m的值,进而AC和OC,结合反比例函数系数k的几何意义求得解析式.【题目详解】解(1)∵AB=BO,∠BAO=30°,∴∠AOB=∠BAO=30°.(2)过点A作AC⊥x轴,∵∴,∴A(﹣6,).(3)设OB=AB=,得出∠ABC=60°,在直角三角形ACB中得出AC=,∵S△ABO=,∴,∴,∴AC==,∴A(﹣3,).把A点坐标代入得反比例函数的解析式为.【题目点拨】本题考查反比例函数系数k的几何意义、特殊角的三角函数值,解题的关键是根据特殊角的三角函数值找出线段的长度.22、38°【解题分析】试题分析:根据平行线的性质先求得∠ABD=26°,再根据角平分线的定义求得∠ABC=52°,再根据直角三角形两锐角互余即可得.试题解析:∵l1∥l2,∠1=26°,∴∠ABD=∠1=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.23、x1=1+,x2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市长宁区2023届高三上学期教学质量调研(一模)政治试卷(解析版)
- 村镇银行支持农村电商的信贷政策研究
- 2025年度医疗机构科室承包项目合同书4篇
- 买卖碎石合同协议书(2024版)
- 玉溪云南玉溪市司法局招聘编外人员笔试历年参考题库附带答案详解
- 玉林2025年广西北流市公安局招聘辅警30人笔试历年参考题库附带答案详解
- 潍坊2025年山东潍坊市产业技术研究院招聘7人笔试历年参考题库附带答案详解
- 滁州2025年安徽滁州全椒县公证处招聘公证人员笔试历年参考题库附带答案详解
- 深圳2025年上半年广东深圳法院劳动合同制审判辅助人员招录109人笔试历年参考题库附带答案详解
- 济南山东济南高新东区医院招聘劳务派遣制病房护士4人笔试历年参考题库附带答案详解
- 2024年内蒙古电力集团招聘笔试参考题库含答案解析
- 阿米巴落地实操方案
- 火龙罐综合灸疗法
- 药物制剂工(三级)理论试题题库及答案
- 高强度间歇训练(HIIT)对代谢健康的长期影响
- ICU患者导管留置登记表
- 中建商务工作指南手册
- 耳鼻咽喉:头颈外科疾病诊断流程与冶疗策略
- 贵州省2023年中考英语真题
- 个人借条电子版模板
- 中国思想史 马工程329P
评论
0/150
提交评论