版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省东莞市粤华学校数学九上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知ΔABC中,AE交BC于点D,∠C=∠E,AD:DE=2:3,AE=10,BD=5,则DC的长是()A. B. C. D.2.点关于原点的对称点是A. B. C. D.3.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]4.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形5.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为()A. B. C. D.6.如图方格纸中每个小正方形的边长均为1,点P、A、C都在小正方形的顶点上.某人从点P出发,沿过A、C、P三点的圆走一周,则这个人所走的路程是()A. B. C. D.不确定7.如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90,CO=CD.若B(2,0),则点C的坐标为()A.(2,2) B.(1,2) C.(,2) D.(2,1)8.如果抛物线开口向下,那么的取值范围为()A. B. C. D.9.三角尺在灯泡O的照射下在墙上形成的影子如图所示,OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:410.如果,那么的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_____.12.分解因式:x3y﹣xy3=_____.13.如图,△ABC中,∠ACB=90°,∠A=30°,BC=1,CD是△ABC的中线,E是AC上一动点,将△AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若△CEG是直角三角形,则CE=____.14.______.15.若边长为2的正方形内接于⊙O,则⊙O的半径是___________.16.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).17.已知x=1是一元二次方程x2﹣3x+a=0的一个根,则方程的另一个根为_____.18.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=2:3,则△ADE与△ABC的面积之比为________.三、解答题(共66分)19.(10分)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求该抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)在(2)的条件下,点Q是线段OB上一动点,当△BPQ与△BAC相似时,求点Q的坐标.20.(6分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.21.(6分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?22.(8分)在平面直角坐标系中,直线交轴于点,交轴于点,,点的坐标是.(1)如图1,求直线的解析式;(2)如图2,点在第一象限内,连接,过点作交延长线于点,且,过点作轴于点,连接,设点的横坐标为,的而积为S,求S与的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,过点作轴,连接、,若,时,求的值.23.(8分)为培养学生良好的学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,请根据图表中提供的信息,解答下列问题:整理情况频数频率非常好0.21较好70一般不好36(1)本次抽样共调查了多少名学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名.24.(8分)解下列方程:25.(10分)如图,AB是⊙O的直径,点C在圆O上,BE⊥CD垂足为E,CB平分∠ABE,连接BC(1)求证:CD为⊙O的切线;(2)若cos∠CAB=,CE=,求AD的长.26.(10分)反比例函数与一次函数的图象都过.(1)求点坐标;(2)求反比例函数解析式.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据∠C=∠E以及∠BDE=∠ADC,可以得到△BDE∽△ADC,由AD:DE=2:3,AE=10,可以求出AD和DE的值,再利用对应边成比例,即可求出DC的长.【题目详解】解:∵∠C=∠E,∠BDE=∠ADC∴△BDE∽△ADC∵AD:DE=2:3,AE=10∴AD=4,DE=6∴∴,解得:DC=故选B.【题目点拨】本题主要考查了相似三角形的判定和性质,熟练找出相似三角形以及列出对应边成比例的式子是解决本题的关键.2、C【解题分析】解:点P(4,﹣3)关于原点的对称点是(﹣4,3).故选C.【题目点拨】本题考查关于原点对称的点的坐标,两个点关于原点对称时,两个点的横、纵坐标符号相反,即P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3、D【解题分析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象4、C【解题分析】试题分析:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.考点:命题与定理.5、B【分析】一边长为x米,则另外一边长为:8-x,根据它的面积为9平方米,即可列出方程式.【题目详解】一边长为x米,则另外一边长为:8-x,
由题意得:x(8-x)=9,
故选:B.【题目点拨】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式.6、C【分析】根据题意作△ACP的外接圆,根据网格的特点确定圆心与半径,求出其周长即可求解.【题目详解】如图,△ACP的外接圆是以点O为圆心,OA为半径的圆,∵AC=,AP=,CP=,∴AC2=AP2+CP2∴△ACP是等腰直角三角形∴O点是AC的中点,∴AO=CO=OP=∴这个人所走的路程是故选C.【题目点拨】此题主要考查三角形的外接圆,解题的关键是熟知外接圆的作法与网格的特点.7、A【解题分析】连接CB.∵∠OCD=90°,CO=CD,∴△OCD是等腰直角三角形,∴∠COB=45°.∵△OAB与△OCD是位似图形,相似比为1:2,∴2OB=OD,△OAB是等腰直角三角形.∵2OB=OD,∴点B为OD的中点,∴BC⊥OD.∵B(2,0),∴OB=2,∵△OAB是等腰直角三角形,∴∠COB=45°.∵BC⊥OD,∴△OBC是等腰直角三角形,∴BC=OB=2,∴点C的坐标为(2,2).故选A.8、D【分析】由抛物线的开口向下可得不等式,解不等式即可得出结论.【题目详解】解:∵抛物线开口向下,∴,∴.故选D.【题目点拨】本题考查二次函数图象与系数的关系,解题的关键是牢记“时,抛物线向上开口;当时,抛物线向下开口.”9、B【解题分析】先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.【题目详解】如图,∵OA=20cm,OA′=50cm,∴===∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选B.10、C【分析】由已知条件2x=3y,根据比例的性质,即可求得答案.【题目详解】解:∵2x=3y,∴=.故选C.【题目点拨】本题考查比例的性质,本题考查比较简单,解题的关键是注意比例变形与比例的性质.二、填空题(每小题3分,共24分)11、【分析】等量关系为:红球数:总球数=,把相关数值代入即可求解.【题目详解】设红球有x个,根据题意得:,
解得:x=1.
故答案为1.【题目点拨】用到的知识点为:概率=所求情况数与总情况数之比.12、xy(x+y)(x﹣y).【解题分析】分析:首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.详解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13、或【分析】分两种情形:如图1中,当时.如图2中,当时,分别求解即可.【题目详解】解:在中,,,,,,,∴,∴.若△CEG是直角三角形,有两种情况:I.如图1中,当时.∴,作于.则,在中,,,.II.如图2中,当时,∵,∴,∴,∴,此时点与点重合,∴,∴,∴,综上所述,的长为或.故答案为:或.【题目点拨】本题考查了翻折变换,直角三角形性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14、【分析】将特殊角的三角函数值代入求解.【题目详解】解:,故答案为:.【题目点拨】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值是解题关键.15、【分析】连接OB,CO,由题意得∠BOC=90°,OC=OB,在Rt△BOC中,根据勾股定理即可求解.【题目详解】解:连接OB,OC,如图∵四边形ABCD是正方形且内接于⊙O∴∠BOC=90°,
∴在Rt△BOC中,利用勾股定理得:∵OC=OB,正方形边长=2∴利用勾股定理得:则∴.
∴⊙O的半径是,
故答案为:.【题目点拨】此题主要考查了正多边形和圆,本题需仔细分析图形,利用勾股定理即可解决问题.16、【解题分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵两次测量的影长相差8米,∴=8,∴x=4,故答案为4.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.17、【解题分析】设方程另一个根为x,根据根与系数的关系得,然后解一次方程即可.【题目详解】设方程另一个根为x,根据题意得x+1=3,解得x=2.故答案为:x=2.【题目点拨】本题主要考查一元二次方程根与系数的关系,熟记公式是解决本题的关键.18、4:1【解题分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【题目详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案为:4:1.【题目点拨】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.三、解答题(共66分)19、(1);(2)存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9;(3)Q的坐标或.【解题分析】(1)将A(1,0)、B(4,0)、C(0,3)代入y=ax2+bx+c,求出a、b、c即可;(2)四边形PAOC的周长最小值为:OC+OA+BC=1+3+5=9;(3)分两种情况讨论:①当△BPQ∽△BCA,②当△BQP∽△BCA.【题目详解】解:(1)由已知得,解得所以,抛物线的解析式为;(2)∵A、B关于对称轴对称,如下图,连接BC,与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC=5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9;(3)如上图,设对称轴与x轴交于点D.∵A(1,0)、B(4,0)、C(0,3),∴OB=4,AB=3,BC=5,直线BC:,由二次函数可得,对称轴直线,∴,①当△BPQ∽△BCA,,,,,②当△BQP∽△BCA,,,,,,综上,求得点Q的坐标或【题目点拨】本题考查了二次函数,熟练运用二次函数的性质与相似三角形的性质是解题的关键.20、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S△PAB=S△BPO+S△APO-S△AOB,设P求出关于n的函数式,从而求S△PAB的最大值.(3)求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知∠CAD=120°,是∠CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出这样的点,就存在Q点.【题目详解】解:抛物线顶点为可设抛物线解析式为将代入得抛物线,即连接,设点坐标为当时,最大值为存在,设点D的坐标为过作对称轴的垂线,垂足为,则在中有化简得(舍去),∴点D(,-3)连接,在中在以为圆心,为半径的圆与轴的交点上此时设点为(0,m),AQ为的半径则AQ²=OQ²+OA²,6²=m²+3²即∴综上所述,点坐标为故存在点Q,且这样的点有两个点.【题目点拨】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.21、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解题分析】分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.22、(1);(2);(3)【分析】(1)求出点B的坐标,设直线解析式为,代入A、B即可求得直线解析式;(2)过点作于点,延长交于点,通过证明≌,可得,,故点的横坐标为,,设,可求得,故S与的函数关系式为;(3)延长、交于点,过点作点,连接、,先证明≌,可得,通过等量代换可得,再由勾股定理可得,结合即可解得.【题目详解】(1)∵∴,∴∴点设直线解析式为解得,∴直线解析式为(2)过点作于点,延长交于点,∵轴,轴∴∴∴四边形是矩形,∴,∴,∴≌∴,,点的横坐标为,,设,则,∵∴∴∴(3)延长、交于点,过点作点,连接、由(2)可知,∴又∵∵∴∴,,延长交于点,∵,∴∵∴,,∴≌∴∵∴∴∴∵∴∵∴由勾股定理可得∵∴,∴【题目点拨】本题考查了直线解析式的几何问题,掌握直线解析式的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.23、(1)200人;(2)见详解;(3)840人【分析】(1)根据较好的部分对应的圆心角即可求得对应的百分比,即可求得总数,然后根据频率=频数÷总数即可求解;(2)利用公式:频率=频数÷总数即可求解;(3)利用总人数乘以对应的频率即可.【题目详解】解:(1)较好的所占的比例是:,则本次抽样共调查的人数是:(人);(2)非常好的频数是:(人),一般的频数是:(人),较好的频率是:,一般的频率是:,不好的频率是:,故补全表格如下所示:整理情况频数频率非常好420.21较好700.35一般520.26不好360.18(3)该校学生整理错题集情况“非常好”和“较好”的学生的频率为0.21+0.35=0.56,该校学生整理错题集情况“非常好”和“较好”的学生一共约有(人).【题目点拨】本题考查的是扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、x1=5,x2=1.【解题分析】移项后分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 别墅改造施工项目协议
- 城市道路园林建设协议
- 眼镜租赁合同样本
- 市政工程招投标质量保证协议
- 税务局人员聘用协议范本
- 广告传媒公司副总经理招聘启事
- 地震灾区重建泥水施工协议
- 临时办公室租赁协议
- 影像制作服务协议
- 地铁站电梯井道建设协议
- 绿化养护续签合同申请书范文
- 教科(2024秋)版科学三年级上册2.6 我们来做“热气球”教学设计
- 山西省运城市2024-2025学年高二上学期10月月考英语试题
- 4.3《课间》 (教案)-2024-2025学年一年级上册数学北师大版
- 【班主任工作】2024-2025学年秋季安全主题班会教育周记录
- 2024-2030年街舞培训行业市场发展分析及发展趋势前景预测报告
- 橡胶坝工程施工质量验收评定表及填表说明
- 《2024版CSCO胰腺癌诊疗指南》更新要点 2
- +陕西省渭南市富平县2023-2024学年九年级上学期摸底数学试卷
- 2023年法律职业资格《客观题卷一》真题及答案
- 公司培训工作报告6篇
评论
0/150
提交评论