



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章证明(三)----特殊平行四边形(二)贺兰一中王金萍一、学生知识状况分析在八年级教材中,学生已经对菱形、正方形的性质及其判别方法,通过一些直观的方法进行了大量的探索,所以学生对所要学习的结论已经有所了解。其次经历了《证明(一)》、《证明(二)》的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。再次在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析因为这节课所涉及的很多命题,学生已有所了解,对于这些命题,教科书利用提问的方式让学生联想回忆,然后利用已有的定理证明它们,让学生从中体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。因此,本节课注重新旧知识的结合及学生推理能力的提高,而不要追求证明题的数量和证明的技巧。对证明方法和证明过程的体验,成为本节课的重点。此外,这部分题目多数有多种思路,注意引导学生选用不同的知识点、从不同的角度思考问题;注意让学生对解题思路和办法进行辨析,从而能对众多解法作优化选择;注意渗透归纳、类比、转化等数学思想方法,而不是给学生一个固有的模式往题目中套。三、教学过程(一)设置问题情境,引入新课我们曾在前面探讨过另一种特殊的平行四边形—---菱形,大家还记得它吗?——我们来共同回忆一下。1、菱形的定义2、菱形的性质3、菱形的判别方法(二)探究新知Ⅰ同学们自己推证菱形性质,行吗?说明:小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。学生A:平行四边形对边平行且相等,对角相等,对角线互相平分而菱形是特殊的平行四边形,所以菱形也具有平行四边形具有的一切性质。学生B:菱形是一组邻边相等的平行四边形,所以根据平行四边形对边相等可以获得菱形的四条边都相等。学生C:因为菱形的两条对角线将菱形分割成了四个全等的三角形,所以我们可以得到菱形的对角线互相垂直,并且每条对角线平分一组对角。师:谁能说出B、C两个同学所说的菱形性质的已知,求证呢?学生D:已知:如图,四边形ABCD是菱形,AB=BCDA求证:AB=BC=CD=ADDA证明:∵四边形ABCD是菱形BC∴AD=BC,AB=CDBC又∵AB=BC∴AB=BC=CD=AD学生E:已知:如图,菱形ABCD的对角线相交于O点求证:AC⊥BD,AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC ABDCABDCO∴AB=AD,OB=OD∴AC⊥BD,AC平分∠BAD(等腰三角形的三线合一)同理得:AC平分∠BCDADCBEBD平分∠ADCBE(三)归纳应用Ⅰ1、菱形的性质:(1)菱形具有平行四边形的一切性质(1)菱形的四条边都相等。(2)菱形的对角线互相垂直,并且每条对角线平分一组对角2、利用性质解决问题例2如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm.通过以上已知条件你能获得哪些结论?若将菱形ABCD的边长改为10cm.你又能获得那些结论?并说明你的理由。3、方法总结:学生F:菱形的每一条对角线可以把菱形分成两个全等的三角形,菱形的两条对角线可以把菱形分成四个全等的直角三角形,因此关于菱形问题往往可以转化为等腰三角形或直角三角形的问题来解决。学生G:如果菱形的两条对角线长分别为a、b则菱形面积为ab4、试一试:(1)已知:菱形ABCD中,E、F分别是CB、CD上的点且BE=DF。求证:(1)△ABE≌△ADF(2)连接AC你能确定AC与EF的关系吗?(3)已知菱形的对角线长分别为6、8,则周长为20面积为245、想一想:请同学们拿出课前准备的正方形,观察它与我们刚学习的菱形有什么不同?正方形是怎样定义的?正方形具有哪些性质?你能证明他们吗?6、例3如图,四边形ABCD是正方形,延长BC至点E,使CE=AC,连结AE,交CD于F,你能求出∠AFC的度数吗?解:∵正方形ABCD∴∠BAD=90°ADBCEF∠DAC=∠BAD=×ADBCEF∠D=90°,AD∥BC∵AD∥BC∴∠DAE=∠E∵CE=AC∴∠CAE=∠E∴∠DAE=∠CAE=×45°=°∴∠AFC=∠DAE+∠D=°+90°=°(四)探究新知Ⅱ问题引入:请大家将课前准备的菱形拿出,以小组为单位用自己手中的工具:直尺、三角板或圆规迅速检查一下你们小组成员所做的四边形是不是菱形,你是怎样检查的?你为什么要这样做?用你的检查方法判断你们小组有几个人做得不标准?你还记得怎样判别一个平行四边形是菱形吗?那么满足什么条件的四边形是菱形?你能证明吗?归纳要点Ⅱ:菱形的判别方法:1、定义:有一组邻边相等的平行四边形是菱形。2、对角线互相垂直的平行四边形是菱形。3、四条边都相等的四边形是菱形。说明:利用课件将学生能想到的判别方法作了总结,除定义外,其他的判别方法要求学生:选择其中一个画图,写已知、求证,并思考证明过程,老师巡视指导,然后小组间交流,中心发言人回答,通过引导学生反思本题是否还有其他解法,比较哪种解法较为简捷,进一步拓宽学生的解题思路,培养思维的灵活性。(五)感悟与收获:通过本节课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私人田地买卖合同协议书
- 混凝土工合同分包协议书
- 空压机出租租赁合同范本
- 食堂托管承包协议书范本
- 瓷砖墙改造租房合同范本
- 申请签订意向协议书范本
- 机械技术学徒培训协议书
- 电梯广告发布协议书范本
- 独家合作分发协议书范本
- 船舶清洁合同协议书范本
- 以人民为中心思想存在问题
- 2023年重庆市大渡口区八桥镇社区工作人员考试模拟题及答案
- GB/T 19466.1-2004塑料差示扫描量热法(DSC)第1部分:通则
- GB/T 18606-2001气相色谱-质谱法测定沉积物和原油中生物标志物
- GB 2811-1989安全帽
- 《中国近现代史纲要》 课件 第十一章 中国特色社会主义进入新时代
- 金字塔原理(完整版)
- “扬子石化杯”第36届中国化学奥林匹克(初赛)选拔赛暨2022年江苏赛区复赛试题及答案
- 公共经济学ppt课件(完整版)
- 浙江省引进人才居住证申请表
- DB62∕T 4134-2020 高速公路服务区设计规范
评论
0/150
提交评论