大学物理学习通章节答案期末考试题库2023年_第1页
大学物理学习通章节答案期末考试题库2023年_第2页
大学物理学习通章节答案期末考试题库2023年_第3页
大学物理学习通章节答案期末考试题库2023年_第4页
大学物理学习通章节答案期末考试题库2023年_第5页
已阅读5页,还剩166页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大学物理学习通超星课后章节答案期末考试题库2023年两根很长的平行直导线,其间距离d、与电源组成回路如图.已知导线上的电流为I,两根导线的横截面的半径均为r0.设用L表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能Wm为

答案:

.

在铁环上绕有N=200匝的一层线圈,若电流强度I=2.5A,铁环横截面的磁通量为F=5×10-4Wb,且铁环横截面的半径远小于铁环的平均半径,则铁环中的磁场能量为

答案:

0.125J.

沿着电场线的方向走,单位长度使电场力做功最小。()

答案:

在电场中的导体内部的

答案:

电势和表面电势相等

导体是等势体,导体表面是等势面。

答案:

在导体外部,紧靠导体表面的点的场强方向与导体表面平行。

答案:

有一个空腔导体而且腔内无电荷,当处于静电平衡时,内表面电荷密度为

答案:

0

封闭导体壳内部静电场受壳外电荷影响。

答案:

空腔导体,而腔内无电荷,则空腔导体内及腔内的电场强度处处为零。

答案:

半径为R的金属球与地相连接,在与球心相距d=2R处有一个点电荷q(>0),则球上的感应电荷为

答案:

-q/2

导体接地,电势为零,但电荷不一定全跑光。

答案:

一个带电粒子在空间的运动轨迹是螺旋线,则该空间除了磁场外,可能还有电场。

答案:

如果一个电子在通过空间某一区域时不偏转,则这个区域一定没有磁场

答案:

原来沿直线前进的电子束,进入一与它垂直的匀强磁场中偏转,形成圆弧轨道,下面说法中正确的是

答案:

进入磁场后电子的动能没有变化

从电子枪同时射出两个电子,初速度分别为2v和3v,经垂直磁场偏转后,则

答案:

同时回到出发点

洛仑兹力可以

答案:

改变运动带电粒子的动量

左手螺旋定则可以判断安培力的方向。()

答案:

安培力是洛伦兹力的一种宏观表现。()

答案:

磁场中任一电放一个小的载流试验线圈可以确定该点的磁感应强度,其大小等于放在该点处试验线圈所受的___和线圈的___的比值。()

答案:

最大磁力距,磁矩

自感为0.25H的线圈中,当电流在(1/16)s内由2A均匀减小到零时,线圈中自感电动势的大小为:

答案:

8.0V.

有两个线圈,线圈1对线圈2的互感系数为M21,而线圈2对线圈1的互感系数为M12.若它们分别流过i1和i2的变化电流且,并设由i2变化在线圈1中产生的互感电动势为ε12,由i1变化在线圈2中产生的互感电动势为ε21,判断下述哪个论断正确.

答案:

M12=M21,ε21>ε12.

载流线圈放在非匀强磁场中所受合力为零。()

答案:

载流线圈放在匀强磁场中所受合力为零。()

答案:

面积为S和2S的两圆线圈1、2如图放置,通有相同的电流I.线圈1的电流所产生的通过线圈2的磁通用F21表示,线圈2的电流所产生的通过线圈1的磁通用F12表示,则F21和F12的大小关系为:

答案:

F21=F12.

对于单匝线圈取自感系数的定义式为L=F/I.当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L

答案:

不变.

在真空中一个通有电流的线圈a所产生的磁场内有另一个线圈b,a和b相对位置固定.若线圈b中电流为零(断路),则线圈b与a间的互感系数:

答案:

可为零也可不为零,与线圈b中电流无关.

两个相距不太远的平面圆线圈,怎样可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心.

答案:

两线圈的轴线互相垂直放置.

两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使

答案:

一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.

在圆柱形空间内有一磁感强度为的均匀磁场,如图所示.的大小以速率dB/dt变化.在磁场中有A、B两点,其间可放直导线AB和弯曲的导线AB,则

答案:

AB直导线中的电动势小于AB弧形导线中的电动势.

当把永久磁铁放到超导体板上方时,将发生下列哪种现象?

答案:

排斥.

在圆柱形空间内有一磁感强度为的均匀磁场,如图所示,的大小以速率dB/dt变化.有一长度为l0的金属棒先后放在磁场的两个不同位置1(ab)和2(a'b'),则金属棒在这两个位置时棒内的感应电动势的大小关系为

答案:

ε2>ε1.

一根长度为L的铜棒,在均匀磁场中以匀角速度ω绕通过其一端O的定轴旋转着,的方向垂直铜棒转动的平面,如图所示.设t=0时,铜棒与Ob成θ角(b为铜棒转动的平面上的一个固定点),则在任一时刻t这根铜棒两端之间的感应电动势是:

答案:

.

如图所示,导体棒AB在均匀磁场B中绕通过C点的垂直于棒长且沿磁场方向的轴OO’转动(角速度与同方向),BC的长度为棒长的,则

答案:

A点比B点电势高.

如图所示,长度为l的直导线ab在均匀磁场中以速度移动,直导线ab中的电动势为

答案:

0.

安培力和洛伦兹力本质上是不同的。()

答案:

半径为a的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R;当把线圈转动使其法向与的夹角a=60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是

答案:

与线圈面积成正比,与时间无关.

一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO′转动,转轴与磁场方向垂直,转动角速度为w,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?

答案:

把线圈的角速度w增大到原来的两倍.

将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时

答案:

两环中感应电动势相等.

如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反.

答案:

滑线变阻器的触点A向左滑动.

尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中

答案:

感应电动势相同,感应电流不同.

一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为b.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度b将

答案:

变大.

一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力

答案:

右边大于左边.

一均匀细杆原来静止放在光滑的水平面上,现在其一端给予一垂直于杆身的水平方向的打击,此后杆的运动情况是:

答案:

杆的质心沿打击力的方向运动,杆又绕质心转动.

有两个力作用在一个有固定转轴的刚体上:

(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;

(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;

(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;

(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.

在上述说法中,

答案:

(1)

、(2)正确,(3)

、(4)

错误.

4.某段时间内,圆形极板的平板电容器两板电势差随时间变化的规律是:Uab=Ua-Ub=Kt(K是正值常量,t是时间).设两板间电场是均匀的,此时在极板间1、2两点(2比1更靠近极板边缘)处产生的磁感强度和的大小有如下关系:

答案:

B1<B2.

用顺磁质作成一个空心圆柱形细管,然后在管面上密绕一层细导线.当导线中通以稳恒电流时,下述四种说法中哪种正确?

答案:

介质中的磁感强度比空腔处的磁感强度大.

关于稳恒电流磁场的磁场强度,下列几种说法中哪个是正确的?

答案:

若闭合曲线上各点均为零,则该曲线所包围传导电流的代数和为零.

一个磁导率为m1的无限长均匀磁介质圆柱体,半径为R1.其中均匀地通过电流I.在它外面还有一半径为R2的无限长同轴圆柱面,其上通有与前者方向相反的电流I,两者之间充满磁导率为m2的均匀磁介质.则在01的空间磁场强度的大小等于

答案:

.

如图所示,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是

答案:

ab边转入纸内,cd边转出纸外.

如图所示为一测定水平方向匀强磁场的磁感强度(方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为

答案:

3m/2.

如图所示,在磁感强度为的均匀磁场中,有一圆形载流导线,a、b、c是其上三个长度相等的电流元,则它们所受安培力大小的关系为

答案:

Fb

>

Fc

>

Fa.

如图所示,长载流导线ab和cd相互垂直,它们相距l,ab固定不动,cd能绕中点O转动,并能靠近或离开ab.当电流方向如图所示时,导线cd将

答案:

逆时针转动同时靠近ab.

有两个半径相同的圆环形载流导线A、B,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?

答案:

均发生转动和平动,最后两线圈电流同方向并紧靠一起.

如图所示,导线框abcd置于均匀磁场中(的方向竖直向上),线框可绕AA′轴转动.导线通电时,转过a角后,达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即a不变),可以采用下列哪一种办法?(导线是均匀的)

答案:

将磁场减为原来的1/2或线框中电流减为原来的1/2.

如图所示,一根长为ab的导线用软线悬挂在磁感强度为的匀强磁场中,电流由a向b流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab导线与软线连接处张力为零则必须:

答案:

不改变电流方向,而适当增大电流.

在匀强磁场中,有两个平面线圈,其面积A1

=

2

A2,通有电流I1

=

2

I2,它们所受的最大磁力矩之比M1

/

M2等于

答案:

4.

若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:

答案:

该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.

有一N匝细导线绕成的平面正三角形线圈,边长为a,通有电流I,置于均匀外磁场中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩Mm值为

答案:

0.

如图所示,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将

答案:

向着长直导线平移.

如图所示,长直电流I2与圆形电流I1共面,并与其一直径相重合

(但两者间绝缘)。设长直电流不动,则圆形电流将

答案:

向右运动.

一个通有电流I的导体,厚度为D,横截面积为S,放置在磁感强度为B的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V,则此导体的霍尔系数等于

答案:

.

一铜板厚度为D=1.00

mm,放置在磁感强度为B=1.35

T的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示,现测得铜板上下两面电势差为V=1.10×10-5

V,已知铜板中自由电子数密度n=4.20×1028

m-3,电子电荷e=1.60×10-19

C,则此铜板中的电流为

答案:

54.8

A.

“不存在磁单极”这一结论可由下面的哪个方程得到

答案:

.

α粒子与质子以同一速率垂直于磁场方向入射到均匀磁场中,它们各自作圆周运动的半径比Ra

/

Rp和周期比Ta

/

Tp分别为:

答案:

2和2

.

一电子以速度垂直地进入磁感强度为的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将

答案:

反比于B,正比于v2.

按玻尔的氢原子理论,电子在以质子为中心、半径为r的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与垂直,如图所示,则在r不变的情况下,电子轨道运动的角速度将:

答案:

增加.

如图所示,一个电荷为+q、质量为m的质点,以速度沿x轴射入磁感强度为B的均匀磁场中,磁场方向垂直纸面向里,其范围从x=0延伸到无限远,如果质点在x=0和y=0处进入磁场,则它将以速度从磁场中某一点出来,这点坐标是x=0和

答案:

.

已知质子的质量m=1.67×10-27kg,电荷e=1.6×10-19C。一张气泡室照片表明,质子的运动轨迹是一半径为10cm的圆弧,运动轨迹平面与磁场垂直,磁感强度大小为0.3Wb/m2.该质子动能的数量级为

答案:

0.01MeV.

一电荷为q的粒子在均匀磁场中运动,下列哪种说法是正确的?

答案:

在速度不变的前提下,若电荷q变为-q,则粒子受力反向,数值不变.

如图所示,为四个带电粒子在O点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是

答案:

Oc.

在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将

答案:

向上偏.

一运动电荷q,质量为m,进入均匀磁场中,

答案:

其动能不变,动量改变.

一个动量为p的电子,沿图示方向入射并能穿过一个宽度为D、磁感强度为(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为

答案:

.

如图所示,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知

答案:

,且环路上任意一点B≠0.

取一闭合积分回路L,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则

答案:

回路L内的ΣI不变,L上各点的改变.

若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布

答案:

可以用安培环路定理和磁感强度的叠加原理求出.

如图所示,两根直导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感强度沿图中闭合路径L的积分等于

答案:

.

一条河在某一段直线岸边同侧有A、B两个码头,相距1km.甲、乙两人需要从码头A到码头B,再立即由B返回.甲划船前去,船相对河水的速度为4km/h;而乙沿岸步行,步行速度也为4km/h.如河水流速为2km/h,方向从A到B,则

答案:

甲比乙晚10分钟回到A

无限长直圆柱体,半径为R,沿轴向均匀流有电流.设圆柱体内(r<R)的磁感强度为Bi,圆柱体外(r>R)的磁感强度为Be,则有

答案:

Bi与r成正比,Be与r成反比.

某人骑自行车以速率v向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来?

答案:

北偏西30°

用一根细线吊一重物,重物质量为5kg,重物下面再系一根同样的细线,细线只能经受70N的拉力.现在突然向下拉一下下面的线.设力最大值为50N,则

答案:

两根线都不断.

已知水星的半径是地球半径的0.4倍,质量为地球的0.04倍.设在地球上的重力加速度为g,则水星表面上的重力加速度为:

答案:

0.25g

如图所示,质点的质量为m,置于光滑球面的顶点A处(球面固定不动).当它由静止开始下滑到球面上B点时,它的加速度的大小为

答案:

.

如图所示,六根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?

答案:

Ⅱ区域.

在磁感强度为的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量与的夹角为a

,则通过半球面S的磁通量(取弯面向外为正)为

答案:

-πr2Bcosa.

均匀磁场的磁感强度垂直于半径为r的圆面.今以该圆周为边线,作一半球面S,则通过S面的磁通量的大小为

答案:

πr2B.

质量分别为m和M的滑块A和B,叠放在光滑水平面上,如图.A、B间的静摩擦系数为μ

s,滑动摩擦系数为μk,系统原先处于静止状态.今将水平力F作用于B上,要使A、B间不发生相对滑动,应有

答案:

F≤μs(m+M)g.

竖立的圆筒形转笼,半径为R,绕中心轴OO'转动,物块A紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A不下落,圆筒转动的角速度ω至少应为

答案:

.

如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A至C的下滑过程中,下面哪个说法是正确的?

答案:

轨道支持力的大小不断增加

如图所示,边长为l的正方形线圈中通有电流I,此线圈在A点产生的磁感强度B为

答案:

.

电流由长直导线1沿平行bc边方向经过a点流入由电阻均匀的导线构成的正三角形线框,由b点流出,经长直导线2沿cb延长线方向返回电源(如图).已知直导线上的电流为I,三角框的每一边长为l.若载流导线1、2和三角框中的电流在三角框中心O点产生的磁感强度分别用、和表示,则O点的磁感强度大小

答案:

B≠0,因为虽然B3=0,但.

四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I.这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O的磁感强度的大小为

答案:

B=0.

如图所示,两个半径为R的相同的金属环在a、b两点接触(ab连线为环直径),并相互垂直放置.电流I沿ab连线方向由a端流入,b端流出,则环中心O点的磁感强度的大小为

答案:

0.

一载有电流I的细导线分别均匀密绕在半径为R和r的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R=2r,则两螺线管中的磁感强度大小BR和Br应满足:

答案:

BR=Br.

边长为L的一个导体方框上通有电流I,则此框中心的磁感强度

答案:

与L成反比.

有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图)的磁感强度的大小为

答案:

.

一光滑的内表面半径为10cm的半球形碗,以匀角速度ω绕其对称OC旋转.已知放在碗内表面上的一个小球P相对于碗静止,其位置高于碗底4cm,则由此可推知碗旋转的角速度约为

答案:

13rad/s

如图所示,两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态.将绳子剪断的瞬间,球1和球2的加速度分别为

答案:

a1=2g,a2=0

质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA

和aB

分别为

答案:

aA<0,

aB=0

光栅是指大量等宽等间距的平行狭缝构成的光学元件。()

答案:

如图所示,电流从a点分两路通过对称的圆环形分路,汇合于b点.若ca、bd都沿环的径向,则在环形分路的环心处的磁感强度

答案:

为零.

电流I由长直导线1沿垂直bc边方向经a点流入由电阻均匀的导线构成的正三角形线框,再由b点流出,经长直导线2沿cb延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O点产生的磁感强度分别用、和表示,则O点的磁感强度大小

答案:

B≠0,因为虽然B3=0、B1=0,但B2≠0.

站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为

答案:

大小为g,方向向下

通有电流I的无限长直导线有如图三种形状,则P,Q,O各点磁感强度的大小BP,BQ,BO间的关系为:

答案:

BO>BQ>BP.

在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B可能为零?

答案:

仅在象限Ⅱ,Ⅳ.

磁场中高斯定理:,以下说法正确的是:

答案:

高斯定理也适用于交变磁场.

流出直流电路任一节点的电流等于从该节点流出的电流。()

答案:

纯金属的电阻率随温度的升高而降低。()

答案:

电流由长直导线1沿半径方向经a点流入一电阻均匀的圆环,再由b点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流为I,.若载流长直导线1、2以及圆环中的电流在圆心O点所产生的磁感强度分别用、,表示,则O点的磁感强度大小

答案:

B≠0,因为虽然B1=B3=0,但B2≠0.

如图所示,边长为a的正方形的四个角上固定有四个电荷均为q的点电荷.此正方形以角速度w绕AC轴旋转时,在中心O点产生的磁感强度大小为B1;此正方形同样以角速度w绕过O点垂直于正方形平面的轴旋转时,在O点产生的磁感强度的大小为B2,则B1与B2间的关系为

答案:

B1=B2.

电流由长直导线1沿半径方向经a点流入一由电阻均匀的导线构成的圆环,再由b点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I,∠aOb=30°.若长直导线1、2和圆环中的电流在圆心O点产生的磁感强度分别用、、表示,则圆心O点的磁感强度大小

答案:

B=0,因为B1

=B2

=B3

=0.

有一半径为R的单匝圆线圈,通以电流I,若将该导线弯成匝数N=2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的

答案:

4倍和1/2.

如图所示,电流由长直导线1沿ab边方向经a点流入由电阻均匀的导线构成的正方形框,由c点沿dc方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O点产生的磁感强度分别用、、表示,则O点的磁感强度大小

答案:

B=0,因为虽然B1≠0、B2≠0,但.B3=0

有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B1/B2为

答案:

1.11.

如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O点的磁感强度大小等于

答案:

.

电流是指导体内自由电子在外场作用下有宏观移动。()

答案:

电流是一个矢量。()

答案:

直径为

2mm

的导线由电阻率为的材料制成,当20A的电流均匀地流过该导体时,则导体内部的场强大小为()。

答案:

0.2

如图所示,砂子从h=0.8m高处下落到以3m/s的速率水平向右运动的传送带上.取重力加速度g=10m/s2.传送带给予刚落到传送带上的砂子的作用力的方向为

答案:

与水平夹角53°向上.

一质量为60

kg的人起初站在一条质量为300

kg,且正以2

m/s的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v应为

答案:

6

m/s

质量分别为mA和mB(mA>mB)、速度分别为

(vA>vB)的两质点A和B,受到相同的冲量作用,则

答案:

A、B的动量增量相等

质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为

答案:

mv

质量为20

g的子弹沿X轴正向以500m/s的速率射入一木块后,与木块一起仍沿X轴正向以50

m/s的速率前进,在此过程中木块所受冲量的大小为

答案:

9N·s

A、B两条船质量都为M,首尾相靠且都静止在平静的湖面上,如图所示.A、B两船上各有一质量均为m的人,A船上的人以相对于A船的速率u跳到B船上,B船上的人再以相对于B船的相同速率u跳到A船上.取如图所示x坐标,设A、B船所获得的速度分别为vA、vB,下述结论中哪一个是正确的?

答案:

vA<0,vB>0

机枪每分钟可射出质量为20

g的子弹900颗,子弹射出的速率为800

m/s,则射击时的平均反冲力大小为

答案:

240N

依靠静电力能维持回路中的恒定电流。()

答案:

2.室温下,铜导线内自由电子数密度,导线中电流密度,则电子定向漂移速率为:

答案:

.

电源的电动势是指单位正电荷从负极经电源内部移到正极时非静电力所做的功。()

答案:

物理学家伏特什么时候发明伏达电堆?()

答案:

1800

动物学家伽伐尼什么时候发现了伽伐尼电流?()

答案:

1786年

一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U12、电场强度的大小E、电场能量W将发生如下变化:

答案:

U12增大,E不变,W增大.

一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷Q、电场强度的大小E和电场能量W将发生如下变化

答案:

Q减小,E减小,W减小.

两个完全相同的电容器C1和C2,串联后与电源连接.现将一各向同性均匀电介质板插入C1中,如图所示,则

答案:

电容器组贮存的总能量增大.

将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示.金属板的插入及其所处位置的不同,对电容器储存电能的影响为:

答案:

储能增加,但与金属板相对极板的位置无关.

一长度为L的翘翘板的两端分别做了一个小孩和一个大人,大人的质量是小孩的2倍,忽略跷跷板的质量,则有两人和跷跷板组成的质点系的质心,在跷跷板上的何处。

答案:

在距离大人L/3处;

一船浮于静水中,船长L,质量为m,一个质量也为m的人从船尾走到船头.不计水和空气的阻力,则在此过程中船将

答案:

后退

一质量为m的质点,在半径为R的半球形容器中,由静止开始自边缘上的A点滑下,到达最低点B时,它对容器的正压力为N.则质点自A滑到B的过程中,摩擦力对其作的功为

答案:

.

如图所示,M、N为水平面内两根平行金属导轨,ab与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab向右平移时,cd

答案:

向右移动.

一质点在几个外力同时作用下运动时,下述哪种说法正确?

答案:

外力的冲量是零,外力的功一定为零.

已知两个物体A和B的质量以及它们的速率都不相同,若物体A的动量在数值上比物体B的大,则A的动能EKA与B的动能EKB之间

答案:

不能判定谁大谁小.

如图所示,劲度系数为k的轻弹簧在质量为m的木块和外力(未画出)作用下,处于被压缩的状态,其压缩量为x.当撤去外力后弹簧被释放,木块沿光滑斜面弹出,最后落到地面上.

答案:

木块落地时的速度v满足

把轻的正方形线圈用细线挂在载流直导线AB的附近,两者在同一平面内,直导线AB固定,线圈可以活动.当正方形线圈通以如图所示的电流时线圈将

答案:

靠近导线AB.

A、B两木块质量分别为mA和mB,且mB=2mA,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比EKA/EKB为

答案:

2.

质量为m=0.5kg的质点,在Oxy坐标平面内运动,其运动方程为x=5t,y=0.5t2(SI),从t=2s到t=4s这段时间内,外力对质点作的功为

答案:

3J.

在如图所示系统中(滑轮质量不计,轴光滑),外力通过不可伸长的绳子和一劲度系数k=200N/m的轻弹簧缓慢地拉地面上的物体.物体的质量M=2kg,初始时弹簧为自然长度,在把绳子拉下20cm的过程中,所做的功为(重力加速度g取10m/s2)

答案:

3J.

一个质点同时在几个力作用下的

(SI)其中一个力为恒力

(SI),则此力在该位移过程中所作的功为

答案:

67 J

一质量为m的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m.槽的圆半径为R,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是

答案:

.

如图所示,把轻的导线圈用线挂在磁铁N极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内.当线圈内通以如图所示方向的电流时,线圈将

答案:

发生转动,同时靠近磁铁.

两个同心圆线圈,大圆半径为R,通有电流I1;小圆半径为r,通有电流I2,方向如图.若r

<<

R

(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为

答案:

0.

一维势能函数如图所示,图中E1、E2、E3分别代表粒子1,2,3具有的总能量.设三个粒子开始都在x=0处,则向x正方向运动不受限制的粒子

答案:

只有粒子3

如图所示,置于水平光滑桌面上质量分别为m1和m2的物体A和B之间夹有一轻弹簧.首先用双手挤压A和B使弹簧处于压缩状态,然后撤掉外力,则在A和B被弹开的过程中

答案:

系统的动量守恒,机械能守恒.

一质点在如图所示的坐标平面内作圆周运动,有一力作用在质点上.在该质点从坐标原点运动到(0,2R)位置过程中,力对它所作的功为

答案:

.

一辆汽车从静止出发在平直公路上加速前进.如果发动机的功率一定,下面哪一种说法是正确的?

答案:

汽车的加速度随时间减小.

一平行板电容器充电后与电源断开,然后将其一半体积中充满介电常量为e的各向同性均匀电介质(如图),则

答案:

两部分中的电场强度相等.

三个电容器联接如图.已知电容C1

=

C2

=

C3

,而C1、C2、C3的耐压值分别为100V、200V、300V.则此电容器组的耐压值为

答案:

300V.

C1和C2两空气电容器,把它们串联成一电容器组.若在C1中插入一电介质板,则

答案:

C1的电容增大,电容器组总电容增大.

金属球A与同心球壳B组成电容器,球A上带电荷q,壳B上带电荷Q,测得球与壳间电势差为UAB,可知该电容器的电容值为

答案:

q/

UAB.

一个金属球从高度h1=1m处落到一块钢板上,向上弹跳到高度h2=81cm处,这个小球与钢板碰撞的恢复系数e是:

答案:

0.90.

对于多个带电体系,整个空间的电场能等于改带电体系所有的自能和互能之和。()

答案:

动能为EK的A物体与静止的B物体碰撞,设A物体的质量为B物体的二倍,mA=2mB.若碰撞为完全非弹性的,则碰撞后两物体总动能为

答案:

.

速度为v0的小球与以速度v(v与v0方向相同,并且v<v0)滑行中的车发生完全弹性碰撞,车的质量远大于小球的质量,则碰撞后小球的速度为

答案:

2v

-v

0

两个质量为m1和m2的小球,在一直线上作完全弹性碰撞,碰撞前两小球的速度分别为v1和v2(同向),在碰撞过程中两球的最大形变能是

答案:

.

人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A和B.用L和EK分别表示卫星对地心的角动量及其动能的瞬时值,则应有

答案:

LA=LB,EKA>EKB.

假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的

答案:

角动量守恒,动能也守恒.

一质点作匀速率圆周运动时

答案:

它的动量不断改变,对圆心的角动量不变.

体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是

答案:

同时到达.

如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O.该物体原以角速度w在半径为R的圆周上绕O旋转,今将绳从小孔缓慢往下拉.则物体

答案:

角动量不变,动能、动量都改变.

一平行板电容器与电源相连,电源端电压为U,电容器极板间距离为d.电容器中充满二块大小相同、介电常量(电容率)分别为e1、e2的均匀介质板,如图所示,则左、右两侧介质中的电位移矢量的大小分别为:

答案:

e1U/d,e2U/d.

静电场中,关系式

答案:

适用于任何电介质.

关于静电场中的电位移线,下列说法中,哪一个是正确的?

答案:

起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.

如图所示为一带电导体球A,其上包着一层各向同性的均匀电介质球壳B.若在介质球壳层中取一闭合面S1,在介质球壳外取一闭合面S2,则通过S1和S2的电场强度通量F1和F2及电位移通量Y1和Y2之间的关系为

答案:

F1F2,Y1=Y2.

一正方形均匀薄板,已知它对通过中心并与板面垂直的轴的转动惯量为J.若以其一条对角线为轴,则薄板对此轴的转动惯量为:

答案:

(1/2)J.

两个截面积不同、长度相同的铜棒串联在一起,两端加有一定的电压V,下列说法正确的是:

答案:

通过两铜棒截面上的电流强度相同.

电场能是定域电场分布的空间内,它可以是负的。()

答案:

静电能是点电荷之间的相互作用的电势能之和。()

答案:

在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大.在圆柱与圆筒之间充满电导率为g的均匀导电物质,当在圆柱与圆筒间加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示.则在柱与筒之间与轴线的距离为r的点的电场强度为:

答案:

.

4.在铜导线外涂一银层后将其两端接入稳恒电源,则在铜线和银层中

答案:

电场相等.

室温下,铜导线内自由电子数密度为n=8.5×1028个/m3,导线中电流密度的大小J=2×106A/m2,则电子定向漂移速率为:

答案:

1.5×10-4m/s.

用力F把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将

答案:

(a)减少,(b)增加.

如果某带电体其电荷分布的体密度ρ增大为原来的2倍,则其电场的能量变为原来的

答案:

4倍.

如图所示,将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的金属板平行地插入两极板之间,则由于金属板的插入及其所放位置的不同,对电容器储能的影响为:

答案:

储能减少,但与金属板相对极板的位置无关.

半径为R,质量为M的均匀圆盘,靠边挖去直径为R的一个圆孔后(如图),对通过圆盘中心O且与盘面垂直的轴的转动惯量是

答案:

.

如图所示,图(a)为一绳长为l、质量为m的单摆.图(b)为一长度为l、质量为m能绕水平固定轴O自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成q角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以w1、w2表示.则:

答案:

.

有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为JA和JB,则

答案:

JA=JB.

两个金属板构成的电容器的电容量与极板面积成反比。()

答案:

两个金属板构成的电容器的电容量与极板距离成反比。()

答案:

一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R,杆长为2R,杆和球体的质量均为m.若杆对通过其中点O1,与杆垂直的轴的转动惯量为J1,球体对通过球心O2的转动惯量为J2,则整个刚体对通过杆与球体的固结点O且与杆垂直的轴的转动惯量为

答案:

J=(J1+mR2)+(J2+mR2).

两个匀质圆盘A和B的密度分别为rA和rB,若rA>rB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为JA和JB,则

答案:

JB>JA

将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为b.如果以拉力2mg代替重物拉绳时,飞轮的角加速度将

答案:

大于2

b.

均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?

答案:

角速度从小到大,角加速度从大到小.

如图所示,将一根质量为m、长为l的均匀细杆悬挂于通过其一端的固定光滑水平轴O上.今在悬点下方距离x处施以水平冲力,使杆开始摆动,要使在悬点处杆与轴之间不产生水平方向的作用力,则施力的位置x应等于

答案:

2l/3.

如图所示,一均匀细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动,杆长l=(5/3)m.今使杆从与竖直方向成60°角的位置由静止释放(g取10m/s2),则杆的最大角速度为

答案:

3rad/s.

一圆盘绕过盘心且与盘面垂直的光滑固定轴O以角速度w按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度w

答案:

必然增大.

半径分别为R和r的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们带电.在忽略导线的影响下,两球表面的电荷面密度之比σR

/

σr为

答案:

r

/

R

一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E、电容C、电压U、电场能量W四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为

答案:

E↓,C↑,U↓,W↓.

在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:

答案:

球壳内场强分布改变,球壳外不变.

两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则

答案:

两球电容值相等.

一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m、带电荷为+q的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去

,则该质点

答案:

向上运动.

一平行板电容器,两板间距离为d,若插入一面积与极板面积相同而厚度为d/2的、相对介电常量为er的各向同性均匀电介质板(如图所示),则插入介质后的电容值与原来的电容值之比C/C0为

答案:

.

C1和C2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C1中,如图所示,则

答案:

C1极板上电荷增大,C2极板上电荷减少.

充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F与两极板间的电压U的关系是:

答案:

F∝U

2.

两只电容器,C1

=8mF,C2

=2mF,分别把它们充电到

1000V,然后将它们反接(如图所示),此时两极板间的电势差为:

答案:

600V.

一空气平行板电容器,极板间距为d,电容为C.若在两板中间平行地插入一块厚度为d/3的金属板,则其电容值变为

答案:

3C/2.

当一个带电导体达到静电平衡时:

答案:

导体内任一点与其表面上任一点的电势差等于零.

一孤立金属球,带有电荷1.2×10-8C,已知当电场强度的大小为3×106V/m时,空气将被击穿.若要空气不被击穿,已知1/(4pe0)=9×109N·m2/C2,则金属球的半径至少大于

答案:

6.0×10-3m.

在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强

与空气中的场强相比较,应有

答案:

E

<

E0,两者方向相同.

C1和C2两个电容器,其上分别标明

200

pF(电容量)、500

V(耐压值)和

300

pF、900

V.把它们串连起来在两端加上1000

V电压,则

答案:

两者都被击穿.

一个物体正在绕固定光滑轴自由转动

答案:

它受热时角速度变小,遇冷时角速度变大.

关于力矩有以下几种说法:

(1)对某个定轴而言,内力矩不会改变刚体的角动量.

(2)作用力和反作用力对同一轴的力矩之和必为零.

(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.

在上述说法中,

答案:

(1)

、(2)

是正确的.

光滑的水平桌面上有长为2l、质量为m的匀质细杆,可绕通过其中点O且垂直于桌面的竖直固定轴自由转动,转动惯量为,起初杆静止.有一质量为m的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是

答案:

.

在各向同性的电介质中,当外电场不是很强时,电极化强度,式中的

应是

答案:

自由电荷与束缚电荷共同产生的电场强度.

在一点电荷q产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S,则对此球形闭合面:

答案:

高斯定理成立,但不能用它求出闭合面上各点的场强.

如图所示,在一带有电荷为Q的导体球外,同心地包有一各向同性均匀电介质球壳,相对介电常量为εr,壳外是真空.则在介质球壳中的P点处(设)的场强和电位移的大小分别为

答案:

E

=

Q

/

(4πε0εrr2),D

=

Q

/

(4πr2).

一导体球外充满相对介电常量为εr的均匀电介质,若测得导体表面附近场强为E,则导体球面上的自由电荷面密度σ为

答案:

ε0

εr

E.

在静电场中,作闭合曲面S,若有

(式中为电位移矢量),则S面内必定

答案:

自由电荷代数和为零.

如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P处的场强大小与电势(设无穷远处为电势零点)分别为:

答案:

E=0,U<0.

同心导体球与导体球壳周围电场的电场线分布如图所示,由电场线分布情况可知球壳上所带总电荷

答案:

q<0.

两根无限长平行直导线载有大小相等方向相反的电流I,并各以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图),则:

答案:

线圈中感应电流为顺时针方向.

一半径为R的均匀带电球面,带有电荷Q.若规定该球面上的电势值为零,则无限远处的电势将等于

答案:

.

如图所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r变化的关系,该曲线所描述的是(E为电场强度的大小,U为电势)

答案:

半径为R的均匀带正电球面电场的U~r关系.

一矩形线框长为a宽为b,置于均匀磁场中,线框绕OO′轴,以匀角速度w旋转(如图所示).设t=0时,线框平面处于纸面内,则任一时刻感应电动势的大小为

答案:

wabB|coswt|.

关于静电场中某点电势值的正负,下列说法中正确的是:

答案:

电势值的正负取决于电势零点的选取.

一空心导体球壳,其内、外半径分别为R1和R2,带电荷q,如图所示.当球壳中心处再放一电荷为q的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为

答案:

.

有一带正电荷的大导体,欲测其附近P点处的场强,将一电荷量为q0

(q0

>0)的点电荷放在P点,如图所示,测得它所受的电场力为F.若电荷量q0不是足够小,则

答案:

F/

q0比P点处场强的数值小.

如图所示,一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B.已知A上的电荷面密度为+σ

,则在导体板B的两个表面1和2上的感生电荷面密度为:

答案:

,

如图所示,A、B为两导体大平板,面积均为S,平行放置.A板带电荷+Q1,B板带电荷+Q2,如果使B板接地,则AB间电场强度的大小E为

答案:

.

把A,B两块不带电的导体放在一带正电导体的电场中,如图所示.设无限远处为电势零点,A的电势为UA,B的电势为UB,则

答案:

UB<UA.

设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?

答案:

减小两板间的电势差.

一长直导线横截面半径为a,导线外同轴地套一半径为b的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+λ,并设地的电势为零,则两导体之间的P点(

OP

=

r

)的场强大小和电势分别为:

答案:

,.

如图所示,一个电荷为q的点电荷位于立方体的A角上,则通过侧面abcd的电场强度通量等于:

答案:

.

点电荷Q被曲面S所包围,从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后:

答案:

曲面S的电场强度通量不变,曲面上各点场强变化.

有两个电荷都是+q的点电荷,相距为2a.今以左边的点电荷所在处为球心,以a为半径作一球形高斯面.在球面上取两块相等的小面积S1和S2,其位置如图所示.设通过S1和S2的电场强度通量分别为Φ1和Φ2,通过整个球面的电场强度通量为ΦS,则

答案:

Φ1

有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷为q的点电荷,如图所示,则

答案:

无论q是正是负金属球都下移.

一个未带电的空腔导体球壳,内半径为R.在腔内离球心的距离为d处(d<R),固定一点电荷+q,如图所示.用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O处的电势为

答案:

.[D]

半径为r的均匀带电球面1,带有电荷q,其外有一同心的半径为R的均匀带电球面2,带有电荷Q,则此两球面之间的电势差U1-U2为:

答案:

.

一带电大导体平板,平板二个表面的电荷面密度的代数和为σ

,置于电场强度为的均匀外电场中,且使板面垂直于的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为:

答案:

,.

一均匀带电球面,电荷面密度为s,球面内电场强度处处为零,球面上面元dS带有sdS的电荷,该电荷在球面内各点产生的电场强度

答案:

处处不为零.

已知一高斯面所包围的体积内电荷代数和∑q=0,则可肯定:

答案:

穿过整个高斯面的电场强度通量为零.

如图所示,在真空中半径分别为R和2R的两个同心球面,其上分别均匀地带有电荷+q和-3q.今将一电荷为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:

答案:

.

如图所示,实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:

答案:

EAEBEC,UA>UB>UC.

设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E1,U1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E2,U2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为

答案:

E1=E2,U1=U2.

如图所示,一均匀细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动,杆长=(5/3)m.今使杆从与竖直方向成60°角的位置由静止释放(取10m/s2),则杆的最大角速度为

答案:

3rad/s.

如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统

答案:

只有对转轴O的角动量守恒.

质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为

答案:

,顺时针

如图所示,一光滑细杆上端由光滑绞链固定,杆可绕其上端在任意角度的锥面上绕竖直轴OO′作匀角速转动.有一小环套在杆的上端处.开始使杆在一个锥面上运动起来,而后小环由静止开始沿杆下滑.在小环下滑过程中,小环、杆和地球系统的机械能以及小环加杆对轴OO'的角动量这两个量中

答案:

机械能、角动量都守恒.

一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度w

答案:

减小

如图所示,一水平刚性轻杆,质量不计,杆长l=20cm,其上穿有两个小球.初始时,两小球相对杆中心O对称放置,与O的距离d=5cm,二者之间用细线拉紧.现在让细杆绕通过中心O的竖直固定轴作匀角速的转动,转速为w0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为

答案:

.

如图所示,在坐标(a,0)处放置一点电荷+q,在坐标(-a,0)处放置另一点电荷-q.P点是y轴上的一点,坐标为(0,y).当y>>a时,该点场强的大小为:

答案:

.

在带有电荷+Q的金属球产生的电场中,为测量某点场强,在该点引入一电荷为+Q/3的点电荷,测得其受力为.则该点场强的大小

答案:

.

真空中有两个点电荷M、N,相互间作用力为,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力

答案:

大小和方向都不变.

电荷之比为1∶3∶5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的位置使B所受电场力为零时,与的比值为

答案:

1/.

下列几个说法中哪一个是正确的?

答案:

场强可由定出,其中q为试验电荷,q可正、可负,为试验电荷所受的电场力.

关于电场强度定义式,下列说法中哪个是正确的?

答案:

对场中某点,试探电荷受力与q0的比值不因q0而变.

如图所示,在坐标(a,0)处放置一点电荷+q,在坐标(-a,0)处放置另一点电荷-q.P点是x轴上的一点,坐标为(x,0).当x>>a时,该点场强的大小为:

答案:

.

一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力和合力矩为:

答案:

=0,0.

根据高斯定理的数学表达式可知下述各种说法中,正确的是:

答案:

闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.

下面列出的真空中静电场的场强公式,其中哪个是正确的?

答案:

半径为R的均匀带电球面(电荷面密度s)外的电场:.(为球心到场点的矢量)

如图所示,两个同心均匀带电球面,内球面半径为R1、带有电荷Q1,外球面半径为R2、带有电荷Q2,则在外球面外面、距离球心为r处的P点的场强大小E为:

答案:

.

如图所示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.

答案:

半径为R的均匀带电球体.

有一点电荷放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:

答案:

将另一点电荷放进高斯面内.

如图所示,半径为R的均匀带电球面,总电荷为Q,设无穷远处的电势为零,则球内距离球心为r的P点处的电场强度的大小和电势为:

答案:

E=0,.

如图所示,边长为a的等边三角形的三个顶点上,分别放置着三个正的点电荷q、2q、3q.若将另一正点电荷Q从无穷远处移到三角形的中心O处,外力所作的功为:

答案:

.

如图所示,边长为l的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O处的场强值和电势值都等于零,则:

答案:

顶点a、c处是正电荷,b、d处是负电荷.

关于高斯定理的理解有下面几种说法,其中正确的是:

答案:

如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.

如图所示为轴对称性静电场的E~r曲线,请指出该电场是由下列哪一种带电体产生的(E表示电场强度的大小,r表示离对称轴的距离).

答案:

“无限长”均匀带电直线.

高斯定理

答案:

适用于任何静电场.

若匀强电场的场强为,其方向平行于半径为R的半球面的轴,如图所示.则通过此半球面的电场强度通量Fe为

答案:

.

在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为

答案:

.

已知某电场的电场线分布情况如图所示.现观察到一负电荷从M点移到N点.有人根据这个图作出下列几点结论,其中哪点是正确的?

答案:

电场力的功A>0.

如图所示,在匀强电场中,将一负电荷从A移到B.则:

答案:

电场力作负功,负电荷的电势能增加.

点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一试验电荷从A点分别移动到B、C、D各点,则

答案:

从A到各点,电场力作功相等.

真空中有一点电荷Q,在与它相距为r的a点处有一试验电荷q.现使试验电荷q从a点沿半圆弧轨道运动到b点,如图所示.则电场力对q作功为

答案:

0.

有三个直径相同的金属小球.小球1和小球2带等量异号电荷,两者的距离远大于小球直径,相互作用力为F.小球3不带电并装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为

答案:

F/8.

11.下列说法中,哪一个是正确的?

答案:

物体作曲线运动时,有可能在某时刻的法向加速度为零.

惠更斯-菲涅尔原理可以严格证明无后退波。()

答案:

有三个直径相同的金属小球.小球1和2带等量同号电荷,两者的距离远大于小球直径,相互作用力为F.小球3不带电,装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为

答案:

3F/8.

以下不是菲涅耳衍射和夫琅和费衍射共同点或区别的是()。

答案:

入射光都为平行光

夫琅禾费什么时候发表了夫琅和费衍射的研究结果?()

答案:

1821年

光的衍射是指光在传播过程中,能绕过障碍物的现象。()

答案:

一个质点在做匀速率圆周运动时:

答案:

切向加速度不变,法向加速度改变

线偏振光垂直入射到半波片后投射光是什么光?()

答案:

线偏振光

非晶体不可以用以下哪个人工的方法变成双折射晶体?()

答案:

加水的方法

某些各向同性的透明介质,在外磁场的作用下,显示出双折射现象,称为克尔效应。()

答案:

一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度a=-2m/s2,则一秒钟后质点的速度

答案:

不能确定

质点沿半径为R的圆周作匀速率运动,每T秒转一圈,在2T时间间隔中,其平均速度大小与平均速率大小分别为

答案:

0,

质点作曲线运动,表示位置矢量,表示速度,表示加速度,S表示路程,a表示切向加速度,下列表达式中,(1),(2),(3),(4).则:

答案:

只有(3)是对的.

一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是

答案:

线圈绕自身直径轴转动,轴与磁场方向垂直.

在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流

答案:

以情况Ⅱ中为最大.

以下五种运动形式中,

加速度保持不变的运动是:

答案:

抛体运动

光的衍射现象主要分成哪两类?()

答案:

菲涅尔衍射和夫琅禾费衍射

两个相互垂直,等幅的,同频率,相位差为的线偏振光叠加,当为多少时,为圆偏振光?()

答案:

π/2

偏振光包含哪些?()

答案:

线偏振光,圆偏振光,椭圆偏振光

迈克耳孙干涉仪可以等效成薄膜干涉。()

答案:

迈克耳孙干涉仪得到的条纹间距是内密外疏。()

答案:

迈克耳孙干涉仪的反射镜移动0.25mm时,看到条纹移过的数目为909个,设光为垂直入射,则所用光源的波长是多少?()

答案:

550nm

用面光源照射时,观察等倾干涉条纹更清晰。()

答案:

非相干条纹叠加不会条纹亮度变亮。()

答案:

已知波长为500nm的平面波通过半径为2.5mm的小孔,小孔到观察P点的距离为60cm,则此波面相对于P点包含有多少个菲涅耳半波带?()

答案:

21

用迈克耳逊干涉仪观察干涉条纹,可移动的反射镜移动的距离为0.233nm,数得干涉条纹移动792条,则光的波长是多少?()

答案:

588.3nm

以下不是等倾干涉条纹特点的是()。

答案:

中央干涉条纹暗亮可以确定

牛顿环中央是亮条纹。()

答案:

在感应电场中电磁感应定律可写成,式中为感应电场的电场强度.此式表明:

答案:

在感应电场中不能像对静电场那样引入电势的概念.

牛顿环的级次是越靠外越高。()

答案:

用单色光观察牛顿环,测得某一亮环的直径为3mm,在它外边第5

个亮环的直径为4.6mm,所用平凸透镜的凸面曲率半径为1.03m,则单色光的波长为多大?()

答案:

590.3nm

观察某单色光所形成的牛顿环,其第2级亮条纹半径平方与第3级亮条纹半径平方之差为1mm,则第19级亮条纹半径平方与第20级亮条纹半径平方之差为多少?()

答案:

1mm

迈克耳孙干涉仪不可以实现等厚干涉。()

答案:

薄层色是一种混合色,不是单色。()

答案:

以下不是等厚干涉条纹特点的是()。

答案:

条纹是不等间距的

波长的光垂直照射到长L为20cm的两块平面玻璃上,这两块平面玻璃一边互相接触,另一边夹一直径d为0.05mm的细丝,两块玻璃片间形成了空气楔,则整个玻璃片上可以看到多少条亮条纹?()

答案:

147

以下哪个不是晶体的光轴特点?()

答案:

晶体光轴仅限于某一条特殊的直线

以下说法不正确的是()。

答案:

e光在晶体中传播遵循折射定律

主平面是指晶体光轴和一条给定光线所形成的平面。()

答案:

在劈尖干涉条纹中,在劈尖的棱边上一定是暗条纹。()

答案:

波长的光垂直照射到长L为20cm的两块平面玻璃上,这两块平面玻璃一边互相接触,另一边夹一直径d为0.05mm的细丝,两块玻璃片间形成了空气楔,则相邻干涉条纹的距离是多少?()

答案:

1.36mm

现有两块折射率分别为1.45和1.46的玻璃板,使其一端相接触,形成夹角为6度的劈尖。将波长为550nm的单色光垂直投射在劈尖上,在上方观察劈尖的干涉条纹,则条纹间距是多少?()

答案:

0.158mm

在空气劈尖膜的等厚干涉中,是哪两个面的反射光发生干涉?()

答案:

上板的下表面和下板的上表面

光程差等于一个定值的点,一定在同一种条纹上。()

答案:

在薄膜干涉中,膜的厚度很大时不会有干涉现象。()

答案:

透镜会对光程产生很大的影响。()

答案:

在杨氏实验装置中,光源波长为640nm,两狭缝间距为0.4mm,光屏离狭缝的距离为50cm,若p点离中央亮条纹为

0.1mm,则两束光在p点的相位差是多少?()

答案:

45度

已知肥皂膜折射率为1.33,平行光与法线成30度入射,则能产生红光()的二级反射干涉条纹的肥皂膜厚度是多少?()

答案:

710nm

波长为400~760nm的可见光正射在一块厚度为,折射率为1.5玻璃片上,则从玻璃片反射的光中,以下不是最强光的波长的是()。

答案:

654nm

普通光源的光波列只会与本身干涉,不会与其他的光波列干涉。()

答案:

自然光垂直照射到空气中一厚度为380nm的肥皂膜上,设肥皂膜的折射率为1.33,则肥皂膜正面哪些波长的光干涉极大?()

答案:

674nm

在杨氏实验装置中,光源波长为640nm,两狭缝间距为0.4mm,光屏离狭缝的距离为50cm,则光屏上第1亮条纹和中央亮条纹之间的距离是多少?()

答案:

0.08cm

电场强度矢量E称为光矢量。

答案:

一束700nm单色光从空气射入水中,则光的()

答案:

频率不变,波长变小

o光在晶体中的折射率是各向同性的。()

答案:

零级条纹的位置不随着入射光角度的变化而变化。()

答案:

照射杨氏双缝是扩展光源,它的宽度为b,可以把它视为许多平行于双缝的细线光源的非相干叠加。()

答案:

波长为700nm的红光投射在间距d为0.022cm的双缝上,在距离r为180cm处的光屏上形成干涉条纹,第2级亮纹的位置是多少?()

答案:

11.46mm

波长为500nm的绿光投射在间距d为0.022cm的双缝上,在距离r为180cm处的光屏上形成干涉条纹,两个亮条纹之间的距离是()。

答案:

4.09mm

在晶体内o光的波阵面不是球面。()

答案:

一质点在平面上运动,已知质点位置矢量的表示式为

(其中a、b为常量),

则该质点作

答案:

变速直线运动

下列说法哪一条正确?

答案:

运动物体速率不变时,速度可以变化

自然光通过玻片后是什么光?()

答案:

自然光

在原子中,当电子从激发态向基态跃迁时会向外发出电磁波。()

答案:

用1/4玻片和偏振片不可以区分出部分偏振光和椭圆偏振光。()

答案:

如图所示,截面积为S,截面形状为矩形的直的金属条中通有电流I.金属条放在磁感强度为的匀强磁场中,的方向垂直于金属条的左、右侧面.在图示情况下金属条的上侧面积累的电荷将是正的还是负的?载流子所受的洛伦兹力的大小fm为多大?

答案:

负,IB

/

(nS)

.

在一中空圆柱面上绕有两个完全相同的线圈aa′和bb′,当线圈aa′和bb′如图(1)绕制及联结时,ab间自感系数为L1;如图(2)彼此重叠绕制及联结时,ab间自感系数为L2.则

答案:

L1≠0,L2=0.

在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa′和bb′,当线圈aa′和bb′如图(1)绕制时其互感系数为M1,如图(2)绕制时其互感系数为M2,M1与M2的关系是

答案:

M1≠M2,M2≠0.

不相干是指两列波的相位差在观察时间内无规则地变化。()

答案:

以下不是两波相干所满足的条件的是()。

答案:

相同的光强

以下关于热辐射说法不正确的是()。

答案:

热辐射的特性与辐射体的大小有关

谁是量子物理学的开创者和奠基人?()

答案:

普朗克

在LC电路中电流是一直不变的。()

答案:

19世纪,物理大厦已经落成,但还有两朵乌云,这两朵乌云是什么?()

答案:

以太说和黑体辐射与紫外灾难

一飞机相对空气的速度大小为200

km/h,风速为56

km/h,方向从西向东.地面雷达站测得飞机速度大小为192

km/h,方向是

答案:

向正南或向正北

RC电路中的时间常数随电阻的增大而增大。()

答案:

真空中两根很长的相距为2a的平行直导线与电源组成闭合回路如图.已知导线中的电流为I,则在两导线正中间某点P处的磁能密度为

答案:

.

有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r1和r2.管内充满均匀介质,其磁导率分别为m1和m2.设r1∶r2=1∶2,m1∶m2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L1∶L2与磁能之比Wm1∶Wm2分别为:

答案:

L1∶L2=1∶2,Wm1∶Wm2=1∶2.

在RL电路中,电流的稳态值也与线圈的自感L有关。()

答案:

在RL电路中,开关接通后的暂态过程中,电流是以指数方式随时间变化的。()

答案:

在RL电路中,开关接通的时刻t=0,则接通后电流随时间的变化规律为()。

答案:

缓慢增大

圆铜盘水平放置在均匀磁场中,的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,

答案:

铜盘上有感应电动势产生,铜盘边缘处电势最高.

在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?

答案:

2

a

1+g

热辐射的电磁波的波长、强度与物理的温度无关。()

答案:

热辐射是指受热的固体会辐射电磁波。()

答案:

在一个线圈里通上一个变化电流的时候,在另一个线圈产生的互感电动势就叫做互感系数。()

答案:

在单缝夫琅禾费衍射中,中央亮条纹和其他亮条纹的角宽度相等。()

答案:

当两个线圈的电流可以互相提供磁通量时,他们之间存在互感。()

答案:

互感系数与下列哪些因素不相关?()

答案:

通电量

斯特藩—玻尔兹曼定律和维恩位移定律是遥感,高温测量和红外追踪等技术的物理基础。()

答案:

把自然光变成线偏振光称为起偏。()

答案:

不可以利用晶体的各向异性来做偏振片。()

答案:

已知铯的逸出功A=1.8eV,用纳黄光照射铯,则铯在光电效应中释放的光电子的动能是多少?()

答案:

0.304eV

在1928年,康普顿获得诺贝尔物理学奖。()

答案:

自感系数L取决于回路线圈自身的性质。()

答案:

自感电动势的方向总是阻碍本身回路电流的变化。()

答案:

用偏振片做成的眼镜,可以用来观看3D电影

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论