版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市怀柔区数学九上期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知抛物线,则下列说法正确的是()A.抛物线开口向下 B.抛物线的对称轴是直线C.当时,的最大值为 D.抛物线与轴的交点为2.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()A.b=a+c B.b=ac C.b2=a2+c2 D.b=2a=2c3.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.4.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是()A. B. C. D.5.-4的相反数是()A. B. C.4 D.-46.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.7.下列汽车标志中,可以看作是中心对称图形的是A. B. C. D.8.抛物线的顶点坐标为()A. B. C. D.9.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.64 B.16 C.24 D.3210.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣1二、填空题(每小题3分,共24分)11.如图,已知点A、B分别在反比例函数,的图象上,且,则的值为______.12.当_____时,在实数范围内有意义.13.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.14.如果x:y=1:2,那么=_____.15.反比例函数()的图象经过点A,B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)16.如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_____(结果用含正整数的代数式表示)17.设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=_____.18.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.三、解答题(共66分)19.(10分)抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),与y轴交于点C.点D(xD,yD)为抛物线上一个动点,其中1<xD<1.连接AC,BC,DB,DC.(1)求该抛物线的解析式;(2)当△BCD的面积等于△AOC的面积的2倍时,求点D的坐标;(1)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.20.(6分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.21.(6分)如图,是的直径,点在上,垂直于过点的切线,垂足为.(1)若,求的度数;(2)如果,,则.22.(8分)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量(个)与y销售单价x(元)有如下关系:,设这种双肩包每天的销售利润为w元.(1)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?23.(8分)如图,直线l的解析式为y=x,反比例函数y=(x>0)的图象与l交于点N,且点N的横坐标为1.(1)求k的值;(2)点A、点B分别是直线l、x轴上的两点,且OA=OB=10,线段AB与反比例函数图象交于点M,连接OM,求△BOM的面积.24.(8分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.25.(10分)如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.26.(10分)如图,是的弦,为半径的中点,过作交弦于点,交于点,且.(1)求证:是的切线;(2)连接、,求的度数:(3)如果,,,求的半径.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断.【题目详解】A、a=1>0,则抛物线的开口向上,所以A选项错误;B、抛物线的对称轴为直线x=1,所以B选项错误;C、当x=1时,有最小值为,所以C选项错误;D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确.故选:D.【题目点拨】本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.2、A【分析】利用解直角三角形知识.在边长为a和b两正方形上方的两直角三角形中由正切可得,化简得b=a+c,故选A.【题目详解】请在此输入详解!3、A【解题分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【题目详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4,故选A.【题目点拨】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.4、C【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【题目详解】①当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,∴,②当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,,,,③当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,综上所述:与的函数表达式为:.故答案为C.【题目点拨】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.5、C【分析】根据相反数的定义即可求解.【题目详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.6、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【题目详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【题目点拨】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.7、A【题目详解】考点:中心对称图形.分析:根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.解:A.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;故选A.8、D【解题分析】根据抛物线顶点式的性质进行求解即可得答案.【题目详解】∵解析式为∴顶点为故答案为:D.【题目点拨】本题考查了已知二次函数顶点式求顶点坐标,注意点坐标符号有正负.9、D【解题分析】设AC=x,四边形ABCD面积为S,则BD=16-x,
则:S=AC•BD=x(16-x)=-(x-8)2+32,
当x=8时,S最大=32;
所以AC=BD=8时,四边形ABCD的面积最大,
故选D.【题目点拨】二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.10、C【解题分析】试题解析:关于的一元二次方程没有实数根,,解得:故选C.二、填空题(每小题3分,共24分)11、【分析】作轴于C,轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到,,再证明∽,然后利用相似三角形的性质得到的值,即可得出.【题目详解】解:作轴于C,轴于D,如图,点A、B分别在反比例函数,的图象上,,,,,,∽,,.故答案为.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.12、x≥1且x≠1【分析】二次根式及分式有意义的条件:被开方数为非负数,分母不为1,据此解答即可.【题目详解】∵有意义,∴x≥1且﹣1≠1,∴x≥1且x≠1时,在实数范围内有意义,故答案为:x≥1且x≠1【题目点拨】本题考查二次根式和分式有意义的条件,要使二次根式有意义,被开方数为非负数;要使分式有意义分母不为1.13、【解题分析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形.14、【分析】根据合比性质,可得答案.【题目详解】解:,即.故答案为.【题目点拨】考查了比例的性质,利用了和比性质:.15、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【题目详解】解:由图象经过点A,可知,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【题目点拨】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.16、【解题分析】过点分别作轴,轴,轴,轴,轴,……垂足分别为,根据题意求出,得到图中所有的直角三角形都相似,两条直角边的比都是可以求出点的横坐标为:,再依次求出……即可求解.【题目详解】解:过点分别作轴,轴,轴,轴,轴,……垂足分别为点在直线上,点的横坐标为,点的纵坐标为,即:图中所有的直角三角形都相似,两条直角边的比都是点的横坐标为:,点的横坐标为:点C3的横坐标为:点的横坐标为:点的横坐标为:故答案为:【题目点拨】本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.17、4【分析】把、分别代入,可求得和的值,然后把求得的值代入计算即可.【题目详解】把、分别代入,得和-2=0,∴和,∴=(2-1)×(2+2)=4.故答案为4.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.18、1:1.【分析】先根据三角形中位线定理得出DE∥AB,DE=AB,可推出△CDE∽△CAB,即可得出答案.【题目详解】解:∵点D,E分别是AC和BC的中点,∴DE为△ABC中位线,∴DE∥AB,DE=AB,∴△CDE∽△CAB,∴==.故答案为:1:1.【题目点拨】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.三、解答题(共66分)19、(1)抛物线的解析式为y=﹣x2+2x+1;(2)点D坐标(2,1);(1)M坐标(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系数法求函数解析式;(2)根据解析式先求出△AOC的面积,设点D(xD,yD),由直线BC的解析式表示点E的坐标,求出DE的长,再由△BCD的面积等于△AOC的面积的2倍,列出关于xD的方程得到点D的坐标;(1)设点M(m,0),点N(x,y),分两种情况讨论:当BD为边时或BD为对角线时,列中点关系式解答.【题目详解】解:(1)∵抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),∴,解得:∴抛物线的解析式为y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴,与直线BC交于点E,∵抛物线y=﹣x2+2x+1,与y轴交于点C,∴点C(0,1),∴OC=1,∴S△AOC=×1×1=,∵点B(1,0),点C(0,1)∴直线BC解析式为y=﹣x+1,∵点D(xD,yD),∴点E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面积等于△AOC的面积的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴点D坐标(2,1);(1)设点M(m,0),点N(x,y)当BD为边,四边形BDNM是平行四边形,∴BN与DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴,∴m=1,当BD为边,四边形BDMN是平行四边形,∴BM与DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,当BD为对角线,∴BD中点坐标(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴m=5,综上所述点M坐标(1,0)或(,0)或(﹣,0)或(5,0).【题目点拨】此题是二次函数的综合题,考查待定系数法求函数解析式,动线、动图形与抛物线的结合问题,在(1)使以点B,D,M,N为顶点的四边形是平行四边形时,要分情况讨论:当BD为边时或BD为对角线时,不要有遗漏,平行四边形的性质:对角线互相平分,列中点坐标等式求得点M的坐标.20、(1)见解析;(2)MN=2.【解题分析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【题目详解】(1)证明:如图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN==2.【题目点拨】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.21、(1)40°;(2)【分析】(1)通过添加辅助线,连接OC,证得,再通过,证得,利用等量代换可得,即可得到答案;(2)通过添加辅助线BC,证△ADC∽△ACB,再利用相似的性质得,代入数值即可得到答案.【题目详解】解:(1)如图连结,∵CD为过点C的切线∴又∵∴∴;又∴,∴∵∴(2)如图连接BC∵AB是直径,点C是圆上的点∴∠ACB=90°∵AD⊥CD∴∠ADC=∠ACB=90°又∵∴△ADC∽△ACB∴∵,∴则【题目点拨】本题考查的是圆的相关性质与形似相结合的综合性题目,能够掌握圆的相关性质是解答此题的关键.22、(1)当x=45时,w有最大值,最大值是225;(2)获得200元的销售利润,销售单价应定为40元【分析】(1)根据销售利润=单件利润销售量,列出函数关系式,根据二次函数的性质求出最大值即可;(2)根据二次函数与一元二次方程的关系可计算得,同时要注意考虑实际问题,对答案进行取舍即可.【题目详解】解:与之间的函数解析式根据题意得:w,∵,当x=45时,w有最大值,最大值是225(2)当时,,解得,不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【题目点拨】本题考查二次函数与实际问题,解题的关键是能够根据题意列出函数关系式,并根据二次函数的性质求解实际问题.23、(1)27;(2)2【分析】(1)把x=1代入y=x,求得N的坐标,然后根据待定系数法即可求得k的值;(2)根据勾股定理求得A的坐标,然后利用待定系数法求得直线AB的解析式,再和反比例函数的解析式联立,求得M的坐标,然后根据三角形面积公式即可求得△BOM的面积.【题目详解】解:(1)∵直线l经过N点,点N的横坐标为1,∴y=×1=,∴N(1,),∵点N在反比例函数y=(x>0)的图象上,∴k=1×=27;(2)∵点A在直线l上,∴设A(m,m),∵OA=10,∴m2+(m)2=102,解得m=8,∴A(8,1),∵OA=OB=10,∴B(10,0),设直线AB的解析式为y=ax+b,∴,解得,∴直线AB的解析式为y=﹣3x+30,解得或,∴M(9,3),∴△BOM的面积==2.【题目点拨】本题考查了反比例函数与一次函数的交点,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式和一次函数的解析式,求得、点的坐标是解题的关键.24、(1)如图①点C即为所求作的点;见解析;(2)如图②,点D即为所求作的点,见解析.【分析】(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.【题目详解】解:(1)如图①点C即为所求作的点;(2)如图②,点D即为所求作的点.【题目点拨】本题考查了作图——应用与设计作图,解直角三角形.解决本题的关键是准确画图.25、(1)详见解析;(2)图详见解析,12;(3).【分析】(1)如图1,延长EG交DC的延长线于点H,由“AAS”可证△CGH≌△BGE,可得GE=GH,由直角三角形的性质可得DG=EG=GH;
(2)通过证明△DEO∽△DBO,可得,可求DE=,由平行线分线段成比例可求EG=,GO=EG-EO=,由勾股定理可求BG=CG=,可得DE=AD,即点A与点E重合,可画出图形,由面积公式可求解;
(3)如图3,过点O作OF⊥BC,由旋转的性质和等腰三角形的性质可得GF=G'F,由平行线分线段成比例可求GF的长,由勾股定理可求解.【题目详解】证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级科学上册第二单元人与植物4保护植物教案首师大版1
- 生活培训课件下载
- 《芳香油植物资源》课件
- 辞退告知书-企业管理
- 护理肝脓肿考试试题及答案
- 《复习课鲁教版》课件
- 五年级数学(小数除法)计算题专项练习及答案
- 北师大版八年级数学下册全册单元测试题
- 小班运动安全课件
- 三位数除以一位数(首位不够除)
- 汽车租赁流程图
- “以案促改”心得体会
- 2025届高考语文复习:散文的结构与行文思路 课件
- 审计工作述职报告
- 安全事故现场处置方案(3篇)
- 广东省广州海珠区2023-2024学年八年级上学期期末物理试卷(含答案)
- 中国通 用技术集团招聘笔试题库
- 【MOOC】工程材料学-华中科技大学 中国大学慕课MOOC答案
- 就业招聘服务行业市场前瞻与未来投资战略分析报告
- 收购居间服务合同
- 银行贷款保证合同范本
评论
0/150
提交评论