版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师版八年级下册等腰三角形(第2课时)第一章三角形的证明
1、掌握证明的基本步骤和书写格式。2、会证明和应用等腰三角形的相关结论。3、会证明和应用等边三角形的性质定理。学习目标复习旧知
1.等腰三角形的性质是什么?2.等边三角形有哪些性质?已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线例1.证明:等腰三角形两底角的平分线相等.求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).∵∠1=∠ABC,∠2=∠ACB,∴∠1=∠2.在△BDC和△CEB中,∵∠ACB=∠ABC,BC=CB,∠1=∠2.∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等).21EDCBA讲授新课已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线.例1.证明:等腰三角形两底角的平分线相等.求证:BD=CE.一题多解43EDCBA证明:∵AB=AC,∴∠ABC=∠ACB.∵∠3=∠ABC,∠4=∠ACB,∴∠3=∠4.在△ABD和△ACE中,∵∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的对应边相等).讲授新课已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的高.1.证明:等腰三角形两腰上的高相等.求证:BD=CE.EDCBA分析:要证BD=CE,就需证BD和CE所在的两个三角形的全等.讲授新课已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的中线.2.证明:等腰三角形两腰上的中线相等.求证:BD=CE.EDCBA分析:要证BD=CE,就需证BD和CE所在的两个三角形的全等.讲授新课
刚才,我们只是发现并证明了等腰三角形中比较特殊的线段(角平分线、中线、高)相等
讲授新课
1.在等腰三角形ABC中,(1)如果∠ABD=∠ABC,∠ACE=∠ACB,那么BD=CE吗?如果∠ABD=∠ABC,∠ACE=∠ACB呢?由此,你能得到一个什么结论?(2)如果AD=AC,AE=AB,那么BD=CE吗?如果AD=AC,AE=AB呢?由此你得到什么结论?讲授新课
(1)在△ABC中,如果AB=AC,∠ABD=∠ABC,∠ACE=∠ACB,那么BD=CE.(2)在△ABC中,如果AB=AC,AD=AC,AE=AB,那么BD=CE.
简述为:(1)在△ABC中,如果AB=AC,∠ABD=∠ACE,那么:BD=CE.(2)在△ABC中,如果AB=AC,AD=AE,那么BD=CE.讲授新课想一想:等边三角形都具有哪些性质?讲授新课1.求证:等边三角形三个内角都相等并且每个内角都等于60°.已知:如图,在△ABC中,AB=BC=AC。求证:∠A=∠B=∠C=60°.证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=180°(三角形内角和定理)∴∠A=∠B=∠C=60°.CBA讲授新课1.如图,已知△ABC和△BDE都是等边三角形,
求证:AE=CDABCDE证明:∵△ABC和△BDE都是等边三角形∴AB=BC,∠ABC=∠DBE=60°,BE=BD∴△ABE≌△CBD∴AE=CD讲授新课例2、已知:如图,P、Q是△ABC的边BC上的两点,并PB=PQ=QC=AP=AQ,求∠BAC的大小.讲授新课课后小结通过本节课的学习,你有哪些收获?
等腰三角形等边三角形性质定理等边三角形的判定方法北师版八年级下册等腰三角形(第3课时)第一章三角形的证明
1、学会证明等角对等边,并进行等腰三角形的判定;2、体会反证法,并会用反证法进行证明;3、规范证明的书写过程.学习目标请同学们回答下面的问题:1、等腰三角形的性质是什么?①有两个相等的角.②有两条相等的边.③底边上的中线、高和顶角的平分线重合.讲授新课等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.请一位同学说出已知、求证.已知:在△ABC中,∠B=∠C求证:AB=ACABC讲授新课ABCD证法一:作∠BAC的平分线AD.在△BAD和△CAD中,∠BAD=∠CAD,∠B=∠C,AD=AD(公共边),∵△BAD≌△CAD(AAS),∴AB=AC(全等三角形的对应边相等).讲授新课ABCD证法二:作AD⊥BC,垂足为D.在△BAD和△CAD中,∠ADB=∠ADC,∠B=∠C,AD=AD(公共边),∵△BAD≌△CAD(AAS),∴AB=AC(全等三角形的对应边相等).请同学们想一想:作等腰三角形底边上的中线可以证明吗?为什么?讲授新课ABCD从以上讲解我们可以得到什么结论?已知:在△ABC中,∠A=∠B=∠C求证:AB=AC=BC讲授新课这是由判定定理推导出的一个定理,即判定一个三角形是等边三角形的一种方法.推论1:三个角都相等的三角形是等边三角形.讲授新课ABCD60°60°你又可以得到什么?已知:在等腰△ABC中,AB=AC,∠A=60°(或者∠B=60°)求证:AB=AC=BC讲授新课推论2:有一个角等于60°的等腰三角形是等边三角形.这是由判定定理推导出的又一个定理,即判定一个三角形是等边三角形的另外一种方法.讲授新课小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.即CAB在△ABC中,如果∠B≠∠C,那么AB≠AC.
你认为这个结论成立吗?
如果成立,你能证明它吗?小明是这样想的:
如图,在△ABC中,已知∠B≠∠C,此时,AB与AC要么相等,要么不相等.
假设AB=AC,那么根据“等边对等角”定理可得∠B=∠C,但已知条件是∠B≠∠C.“∠B=∠C”与“∠B≠∠C”相矛盾,因此,AB≠AC.讲授新课论证的新方法----反证法
小明在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法(reductiontoabsurdity)
假设AB=AC,那么根据“等边对等角”定理可得∠B=∠C.但已知条件是∠B≠∠C.“∠B=∠C”与“∠B≠∠C”相矛盾,因此,AB≠AC.反证法是一种重要的数学证明方法.在解决某些问题时常常会有出人意料的作用.CAB讲授新课求证:一个三角形中不能有两个角是直角。(用反证法来证)证明:假设△ABC中有两个直角,不妨设∠A=∠B=90°,那么∠A+∠B+∠C=180°+∠C>180°,
这与三角形的内角和定理相矛盾∴假设不成立∴△ABC中不能有两个直角已知:△ABC求证:∠A、∠B、∠C中不能有两个角是直角讲授新课求证:如果a1,a2,a3,a4,a5都是正数,且a1+a2+a3+a4+a5=1,
那么,这五个数中至少有一个大于或等于1/5.假设这五个数中没有一个大于或等于1/5,即都得小于1/5,那么这五个数的和a1+a2+a3+a4+a5就小于1.这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾.因此,这五个数中至少有一个大于或等于1/5.(用反证法来证)证明:讲授新课例1如图,已知∠A=36°,∠DBC=36°,∠C=72°,计算∠1和∠2的度数,并说明图中有哪些等腰三角形.ABCD36°36°2172°讲授新课解:∵∠A=36°∠DBC=36°∠C=72°∴∠2=180°-∠A-∠DBC-∠C=36°(三角形内角和定理)∴∠A=∠2∴AD=BD(等角对等边)∵∠1=∠A+∠2=72°=∠C∴BD=BC(等角对等边)∴图中的等腰三角形有△ADB、△ABC、△BDC三个.讲授新课例2如图,CD是等腰直角三角形ABC斜边上的高,找出图中有哪些等腰直角三角形。CADB讲授新课答:图中的等腰直角三角形有:等腰Rt△ABC、等腰Rt△ADC和等腰Rt△CDB讲授新课ABC等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。等腰三角形的两个底角相等.简称:等边对等角.顶角ABC底边腰腰底角底角【定义】【性质定理】【性质定理的推论】有两边相等的三角形叫做等腰三角形;D高(简称:“三线合一”)【判定定理】有两个角相等的三角形是等腰三角形.简称:等角对等边.课后小结
等腰三角形:底角的两条平分线相等;两条腰上的中线相等;两条腰上的高线相等。ACBD●●E●
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国玻璃数码万历行业投资前景及策略咨询研究报告
- 2024至2030年中国汽车摇窗机软轴芯行业投资前景及策略咨询研究报告
- 2024至2030年高频汽化电刀项目投资价值分析报告
- 2024至2030年除虫脲项目投资价值分析报告
- 2024至2030年中国拉伸壳体行业投资前景及策略咨询研究报告
- 2024至2030年空调机组检修升降机项目投资价值分析报告
- 2024至2030年登山扣指南针项目投资价值分析报告
- 2024至2030年中国家庭多媒体接线盒行业投资前景及策略咨询研究报告
- 2024至2030年中国冷芯盒树脂行业投资前景及策略咨询研究报告
- 2024年无框图钉板项目可行性研究报告
- 公司日常费用报销管理规定
- 外墙外保温(石墨聚苯板)及装修施工方案
- 会议纪要会议记录Excel表格模板
- LTE无线网络优化PPT课件
- 幼儿园科学领域幼儿发展水平评价指标(分小班、中班、大班)
- 二十四山开门放水作灶真诀
- 动态血压监测在社区高血压患者管理的意义
- 物料替代申请单
- 煤矿矿井机电设备完好规范标准
- 计量型MSA-GRR分析表格模板
- 长沙基准地价修正体系
评论
0/150
提交评论