版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京高淳区四校联考2024届数学九上期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是()A. B. C. D.2.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程()A. B.C. D.3.如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是()A.50° B.40° C.30° D.45°4.如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为()A. B. C. D.5.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.96.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根7.剪纸是中国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.8.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55° B.70° C.110° D.125°9.在以下四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.反比例函数与二次函数在同一直角坐标系的图像可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.化简:-(sin60°﹣1)0﹣2cos30°=________________.12.一次测试,包括甲同学在内的6名同学的平均分为70分,其中甲同学考了45分,则除甲以外的5名同学的平均分为_____分.13.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.14.如图,在Rt△ABC中,∠ABC=90°,AB=1,BC=,将△ABC绕点顶C顺时针旋转60°,得到△MNC,连接BM,则BM的长是_____.15.在一个不透明的塑料袋中装有红色白色球共个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有________个.16.如图,已知点A,C在反比例函数的图象上,点B,D在反比例函的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a−b的值是_______.17.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.18.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣1,1)、B(0,﹣2)、C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,(1)在图中画出点P1、P2、P3;(2)继续将点P3绕点A旋转180°得到点P4,点P4绕点B旋转180°得到点P5,…,按此作法进行下去,则点P2020的坐标为.20.(6分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?21.(6分)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标.22.(8分)已知关于的一元二次方程的两实数根分别为.(1)求的取值范围;(2)若,求方程的两个根.23.(8分)某小型工厂9月份生产的、两种产品数量分别为200件和100件,、两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了、两种产品的生产数量和出厂单价,10月份产品生产数量的增长率和产品出厂单价的增长率相等,产品生产数量的增长率是产品生产数量的增长率的一半,产品出厂单价的增长率是产品出厂单价的增长率的2倍,设产品生产数量的增长率为(),若10月份该工厂的总收入增加了,求的值.24.(8分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.25.(10分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的长.26.(10分)已知函数,(m,n,k为常数且≠0)(1)若函数的图像经过点A(2,5),B(-1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数,的图像始终经过同一个定点M.①求点M的坐标和k的取值②若m≤2,当-1≤x≤2时,总有≤,求m+n的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【题目详解】将代入二次函数,得∴∴方程为∴∵∴故答案为D.【题目点拨】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.2、B【分析】根据题意,找出等量关系列出方程,即可得到答案.【题目详解】解:根据题意,设此款理财产品每期的平均收益率为x,则;故选择:B.【题目点拨】本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程.3、B【分析】根据∠AOB=180°,∠AOC=100°,可得出∠BOC的度数,最后根据圆周角∠BDC与圆心角∠BOC所对的弧都是弧BC,即可求出∠BDC的度数.【题目详解】解:∵AB是⊙O直径,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所对的圆周角是∠BDC,圆心角是∠BOC,∴;故答案选B.【题目点拨】本题考查同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半,在做题时遇到已知圆心角,求圆周角的度数,可以通过计算,得出相应的圆心角的度数,即可得出圆周角的度数.4、D【分析】过点作轴于点,由直角三角形的性质求出长和长即可.【题目详解】解:过点作轴于点,∵四边形为菱形,,∴,OB⊥AC,,∵,∴,∴,∴,,∴,∴.故选D.【题目点拨】本题考查了菱形的性质、勾股定理及含30°直角三角形的性质,正确作出辅助线是解题的关键.5、A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【题目详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四边形AEOF=r²=4,故选A.【题目点拨】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.6、D【题目详解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.7、C【解题分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【题目详解】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误。C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后能够完全重合,旋转180°不能与原图形重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【题目点拨】此题考查轴对称图形和中心对称图形,难度不大8、B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内角和定理即可求解.【题目详解】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【题目点拨】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.9、B【分析】旋转180后能够与原图形完全重合即是中心对称图形,根据轴对称图形与中心对称图形的概念求解.【题目详解】A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【分析】先根据反比例函数图象确定k的值,再分析二次函数图象是否符合,逐一判断即可【题目详解】A、由反比例函数图象知:k>0,因此二次函数图象应开口向上,且与y轴交于负半轴,故此选项错误;B、由反比例函数图象知:k<0,因此二次函数图象应开口向下,故此选项错误;C、由反比例函数图象知:k<0,因此二次函数图象应开口向下,且与y轴交于正半轴,故此选项正确;D、由反比例函数图象知:k>0,因此二次函数图象应开口向上,故此选项错误;故选C.【题目点拨】本题考查反比例函数、二次函数的图象与性质,比较基础.二、填空题(每小题3分,共24分)11、-1【分析】根据实数的性质即可化简求解.【题目详解】-(sin60°﹣1)0﹣2cos30°=-1-2×=-1-=-1故答案为:-1.【题目点拨】此题主要考查实数的运算,解题的关键是熟知特殊三角函数值的求解.12、1.【分析】求出6名学生的总分后,再求出除甲同学之外的5人的总分,进而求出平均分即可.【题目详解】(70×6﹣45)÷(6﹣1)=1分,故答案为:1.【题目点拨】此题考查平均数的计算,掌握公式即可正确解答.13、30°【解题分析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.14、【分析】由旋转的性质得:CA=CM,∠ACM=60°,由三角比可以求出∠ACB=30°,从而∠BCM=90°,然后根据勾股定理求解即可.【题目详解】解:由旋转的性质得:CA=CM,∠ACM=60°,∵∠ABC=90°,AB=1,BC=,∴tan∠ACB=,CM=AC=,∴∠ACB=30°,∴∠BCM=90°,∴BM==.故答案为:.【题目点拨】本题考查了图形的变换-旋转,锐角三角函数,以及勾股定理等知识,准确把握旋转的性质是解题的关键.15、1【分析】设有红球有x个,利用频率约等于概率进行计算即可.【题目详解】设红球有x个,根据题意得:=20%,解得:x=1,即红色球的个数为1个,故答案为:1.【题目点拨】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.16、【分析】利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出=6,即可求出答案.【题目详解】如图,∵由题意知:a-b=4•OE,a-b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案为:.【题目点拨】本题考查了反比例函数图象上点的坐标特征,能求出方程=6是解此题的关键.17、2+【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【题目详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC=,则CD=AB﹣AD﹣BC=x﹣2×=1,解得:x=2+.故答案为:2+【题目点拨】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的倍.18、3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【题目详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案为3.【题目点拨】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.三、解答题(共66分)19、(1)见解析;(2)(﹣2,﹣2)【分析】(1)利用网格特点和旋转的性质画出点P1、P2、P3即可;(2)画出P1~P6,寻找规律后即可解决问题.【题目详解】解:(1)点P1、P2、P3如图所示,(2)(﹣2,﹣2)解析:如图所示:P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2)P5(2,﹣2),P6(0,2)∵6次一个循环∴2020÷6=336...4∴P2020(﹣2,﹣2)【题目点拨】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.20、(1)x;(2)y=﹣4x2+800x;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【分析】(1)根据“每1吨化工原料可以加工成化工产品0.8吨”,即可求出;(2)根据总利润=总售价-总成本即可求出y关于x的函数关系式;(3)先求出y=38400元时,x的值,然后根据二次函数图象的开口方向和增减性即可求出x的取值范围.【题目详解】(1)x÷0.8=x吨,故答案为:x;故答案为:x;(2)根据题意得,y=x[1600﹣4(x﹣50)]﹣x•800=﹣4x2+800x,则y关于x的函数关系式为:y=﹣4x2+800x;(3)当y=38400时,﹣4x2+800x=38400,x2﹣200x+9600=0,(x﹣120)(x﹣80)=0,x=120或80,∵﹣4<0,∴当y≥38400时,80≤x≤120,∴100≤x≤150,∴如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨~150吨范围内.【题目点拨】此题考查的是二次函数的应用,掌握实际问题中的等量关系和二次函数的增减性是解决此题的关键.21、(1)线段BC的长度为4;(2)AC⊥AB,理由见解析;(3)点D的坐标为(﹣2,1)【解题分析】(1))解出方程后,即可求出B、C两点的坐标,即可求出BC的长度;
(2)由A、B、C三点坐标可知OA2=OC•OB,所以可证明△AOC∽△BOA,利用对应角相等即可求出∠CAB=90°;
(3)容易求得直线AC的解析式,由DB=DC可知,点D在BC的垂直平分线上,所以D的纵坐标为1,将其代入直线AC的解析式即可求出D的坐标;【题目详解】解:(1)∵x2﹣2x﹣3=0,∴x=3或x=﹣1,∴B(0,3),C(0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OB•OC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),【题目点拨】本题考查二次函数的综合问题,涉及一元二次方程的解法,相似三角形的判定,等腰三角形的性质,垂直平分线的判定等知识,内容较为综合,需要学生灵活运用所知识解决.22、(1);(2)原方程的两根是﹣3和1.【分析】(1)根据根的判别式求出的取值范围;(2)将,代入方程,求得,再根据,求解方程的两个根.【题目详解】(1)∵一元二次方程有两实数根,,∴∴(2)∵的两实数根分别为∴∴∴∵∴∵∴∴,∴原方程的两根是﹣3和1.【题目点拨】本题考查了一元二次方程根的判别式以及解一元二次方程,掌握一元二次方程根的判别式以及解法是解题的关键.23、5%【分析】根据题意,列出方程即可求出x的值.【题目详解】根据题意,得整理,得解这个方程,得,(不合题意,舍去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年贸易公司标准聘用协议范本
- 2025年外研版高三物理下册月考试卷含答案
- 2025年牛津上海版三年级数学上册阶段测试试卷
- 2025年鲁教版七年级生物上册阶段测试试卷
- 2025年岳麓版九年级科学下册阶段测试试卷含答案
- DB15-T 299-2024 动物铁路运输检疫监督技术规程
- 二零二五年度架工班组承包合同培训与技能提升协议3篇
- 2024年离婚财产分配及子女教育协议3篇
- 2025年冀教新版必修3生物上册阶段测试试卷
- 安徽机电大一数学试卷
- 意识障碍的判断及护理
- (高清版)JTGT 3650-01-2022 公路桥梁施工监控技术规程
- 数据资产入表理论与实践
- 2023年供应商质量年终总结报告
- 2024家庭户用光伏发电系统运行和维护规范
- 医疗机构强制报告制度
- 江苏省镇江市2023-2024学年高一上学期期末考试化学试题(解析版)
- 现场材料员述职报告
- 特种设备检验人员考核培训课件-安全意识培养与心理健康
- 00和值到27和值的算法书
- 总务工作总结和计划
评论
0/150
提交评论