版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省武汉二中学、广雅中学数学九年级第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.2.对于二次函数y=﹣2x2,下列结论正确的是()A.y随x的增大而增大 B.图象关于直线x=0对称C.图象开口向上 D.无论x取何值,y的值总是负数3.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.4.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是().A.3 B.4 C.6 D.85.在一个箱子里放有1个自球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是()A.1 B. C. D.6.如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为()A.1 B.2 C.3 D.47.在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同。若从中随机摸出一个球,摸到白球的概率是,则黑球的个数为()A.3 B.12 C.18 D.278.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.89.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A. B. C. D.10.如图,AD是⊙O的直径,以A为圆心,弦AB为半径画弧交⊙O于点C,连结BC交AD于点E,若DE=3,BC=8,则⊙O的半径长为()A. B.5 C. D.二、填空题(每小题3分,共24分)11.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)12.一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球____________个.13.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为__________.14.如图所示的网格是正方形网格,△和△的顶点都是网格线交点,那么∠∠_________°.15.如图,的对角线交于点平分交于点,交于点,且,连接.下列结论:①;②;③:④其中正确的结论有__________(填写所有正确结论的序号)16.对于为零的两个实数a,b,如果规定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值为____.17.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.18.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是三、解答题(共66分)19.(10分)如图,对称轴为直线的抛物线与轴交于两点,与轴交于点连接其中点坐标.(1)求抛物线的解析式;(2)直线与抛物线交于点与轴交于点求的面积;(3)在直线下方抛物线上有一点过作轴交直线于点.四边形为平行四边形,求点的坐标.20.(6分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.(,,结果精确到)21.(6分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?22.(8分)抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线.(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为;23.(8分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.24.(8分)如图1,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,已知,.(1)求抛物线的解析式;(2)如图2,若点是直线上方的抛物线上一动点,过点作轴的平行线交直线于点,作于点,当点的横坐标为时,求的面积;(3)若点为抛物线上的一个动点,以点为圆心,为半径作,当在运动过程中与直线相切时,求点的坐标(请直接写出答案).25.(10分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC=度,∠BPC=度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.26.(10分)如图,在平面直角坐标中,反比例函数的图象经过点,反比例函数的图象经过点,作直线分别交于两点,已知.(1)求反比例函数的解析式;(2)求的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【题目详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【题目点拨】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.2、B【分析】根据二次函数的性质可判断A、B、C,代入x=0,可判断D.【题目详解】解:∵a=﹣2<0,b=0,∴二次函数图象开口向下;对称轴为x=0;当x<0时,y随x增大而增大,当x>0时,y随x增大而减小,故A,C错误,B正确,当x=0时,y=0,故D错误,故选:B.【题目点拨】本题考查了二次函数的图象和性质,熟练掌握基础知识是解题关键.3、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【题目详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【题目点拨】本题考查勾股定理,关键是利用垂径定理解答.4、B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【题目详解】由题意得:12×=4,即白球的个数是4.故选:B.【题目点拨】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、C【解题分析】结合题意求得箱子中球的总个数,再根据概率公式即可求得答案.【题目详解】依题可得,箱子中一共有球:(个),∴从箱子中任意摸出一个球,是白球的概率.故答案为:C.【题目点拨】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6、B【解题分析】试题分析:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=220°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,则=3,∵点A是双曲线在第二象限分支上的一个动点,∴=AD•DO=×6=3,∴k=EC×EO=2,则EC×EO=2.故选B.考点:2.反比例函数图象上点的坐标特征;2.综合题.7、C【分析】设黑球个数为,根据概率公式可知白球个数除以总球数等于摸到白球的概率,建立方程求解即可.【题目详解】设黑球个数为,由题意得解得:故选C.【题目点拨】本题考查根据概率求数量,熟练掌握概率公式建立方程是解题的关键.8、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【题目详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【题目点拨】本题主要考查了用评率估计概率.9、A【分析】根据几何体的三视图解答即可.【题目详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【题目点拨】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.10、A【分析】由作法得,根据圆周角定理得到∠ADB=∠ABE,再根据垂径定理的推论得到AD⊥BC,BE=CE=BC=4,于是可判断Rt△ABE∽Rt△BDE,然后利用相似比求出AE,从而得到圆的直径和半径.【题目详解】解:由作法得AC=AB,∴,∴∠ADB=∠ABE,∵AB为直径,∴AD⊥BC,∴BE=CE=BC=4,∠BEA=∠BED=90°,而∠BDE=∠ABE,∴Rt△ABE∽Rt△BDE,∴BE:DE=AE:BE,即4:3=AE:4,∴AE=,∴AD=AE+DE=+3=,∴⊙O的半径长为.故选:A.【题目点拨】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.也考查了圆周角定理.二、填空题(每小题3分,共24分)11、6.2【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【题目详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为6.2.【题目点拨】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.12、【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【题目详解】设盒子里有白球x个,根据=得:,解得:x=32.经检验得x=32是方程的解,故答案为32.【题目点拨】此题考查利用频率估计概率,解题关键在于掌握运算公式.13、或【解题分析】由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点即可.【题目详解】解:由图可知P到点A,B的距离为,在第一象限内找到点P的距离为的点,如图所示,由于是钝角三角形,故舍去(5,2),故答案为或.【题目点拨】本题考查了三角形的外心,即到三角形三个顶点距离相等的点,解题的关键是画图找到C点.14、45【分析】先利用平行线的性质得出,然后通过勾股定理的逆定理得出为等腰直角三角形,从而可得出答案.【题目详解】如图,连接AD,∵∴∴∵∴∴∴故答案为45【题目点拨】本题主要考查平行线的性质及勾股定理的逆定理,掌握勾股定理的逆定理及平行线的性质是解题的关键.15、①③④【分析】由四边形ABCD是平行四边形,∠ABC=60°,EC平分∠DCB,得△ECB是等边三角形,结合AB=2BC,得∠ACB=90°,进而得∠CAB=30°,即可判断①;由∠OCF<∠DAO,∠OFC>∠ADO,即可判断②;易证△OEF∽△BCF,得OF=OB,进而得S△AOD=S△BOC=3S△OCF,即可判断③;设OF=a,得DF=4a,BF=2a,即可判断④.【题目详解】∵四边形ABCD是平行四边形,
∴CD∥AB,OD=OB,OA=OC,
∴∠DCB+∠ABC=180°,
∵∠ABC=60°,
∴∠DCB=120°,
∵EC平分∠DCB,
∴∠ECB=∠DCB=60°,
∴∠EBC=∠BCE=∠CEB=60°,
∴△ECB是等边三角形,
∴EB=BC=EC,
∵AB=2BC,
∴EA=EB=EC,
∴∠ACB=90°,∴∠CAB=30°,即:,故①正确;∵AD∥BC,∴∠ADO=∠CBO,∠DAO=∠BCO,∵∠OCF<∠BCO,∠OFC>∠CBO,∴∠OCF<∠DAO,∠OFC>∠ADO,∴错误,故②错误;
∵OA=OC,EA=EB,
∴OE∥BC,
∴△OEF∽△BCF,∴,
∴OF=OB,
∴S△AOD=S△BOC=3S△OCF,故③正确;
设OF=a,∵OF=OB,∴OB=OD=3a,∴DF=4a,BF=2a,
∴BF2=OF•DF,故④正确;
故答案为:①③④.【题目点拨】本题主要考查平行四边形的性质定理,相似三角形的判定和性质,三角函数的定义,以及直角三角形的判定和性质,掌握平行四边形的性质定理,相似三角形的判定和性质,是解题的关键.16、0或2【分析】先根据a☆b=ab-b-1得出关于x的一元二次方程,求出x的值即可.【题目详解】∵a☆b=ab-b-1,∴2☆x=2x-x-1=x-1,∴x☆(2☆x)=x☆(x-1)=0,即,解得:x1=0,x2=2;故答案为:0或2【题目点拨】本题考查了解一元二次方程以及新运算,理解题意正确列出一元二次方程是解题的关键.17、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【题目详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为∴这个新函数的“特征数”是故答案为:【题目点拨】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.18、.【解题分析】试题分析:能构成三角形的情况为:3,4,5;3,4,6;3,5,6;4,5,6这四种情况.直角三角形只有3,4,5一种情况.故能够成直角三角形的概率是.故答案为.考点:1.勾股定理的逆定理;2.概率公式.三、解答题(共66分)19、(1);(2);(3)【分析】(1)根据对称轴公式及点A坐标建立方程组求解即可;(2)根据直线表达式求出点E坐标,再联立直线与抛物线的表达式求交点C、D的坐标,利用坐标即可求出的面积;(3)根据点Q在抛物线上设出点Q坐标,再根据P、Q之间的关系表示出点P的坐标,然后利用平行四边形的性质得到BE=PQ,从而建立方程求解即可.【题目详解】解:(1)由题可得,解得,∴抛物线解析式为;(2)在中,令,得,∴,由,解得或,∴,∴;(3)在中,令,得,解得或,∴,∴BE=1,设,则,∵四边形为平行四边形,∴,∴,整理得:,解得:或,当时,点Q与点B重合,故舍去,∴.【题目点拨】本题为二次函数综合题,熟练掌握对称轴公式、待定系数法求表达式、交点坐标的求法以及平行四边形的性质是解题的关键.20、(1)观众区的水平宽度为;(2)顶棚的处离地面的高度约为.【分析】(1)利用坡度的性质进一步得出,然后据此求解即可;(2)作于,于,则四边形、为矩形,再利用三角函数进一步求出EN长度,然后进一步求出答案即可.【题目详解】(1)观众区的坡度为,顶端离水平地面的高度为,∴,,答:观众区的水平宽度为;(2)如图,作于,于,则四边形、为矩形,m,m,m,在中,,则m,,答:顶棚的处离地面的高度约为.【题目点拨】本题主要考查了三角函数的实际应用,熟练掌握相关方法是解题关键.21、(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【题目详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【题目点拨】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.22、(1),;(2)见解析,或;(3)【分析】(1)根据图像对称轴是直线,得到,再将,代入解析式,得到关于a、b、c的方程组,即可求得系数,得到解析式,再求出顶点坐标即可;(2)根据特定点画出二次函数的大致图象,根据二次函数与不等式的关系,即可得到对应的x的取值范围.(3)求出当时,当时,y的值,即可求出的取值范围.【题目详解】(1)因为图像对称轴是直线,所以,将,代入解析式,得:由题知,解得,所以解析式为:;当时,,所以顶点坐标.(2)二次函数的大致图象:当或,.(3)当时,得,当时,得,所以y取值范围为,即的取值范围为.【题目点拨】本题考查了待定系数法的求解析式、二元一次方程与不等式的关系,本题难度不大,是二次函数中经常考查的类型.23、(1)详见解析;(2)4;(3)【分析】(1)首先连接,通过半径和角平分线的性质进行等角转换,得出,进而得出,即可得证;(2)首先连接,得出,进而得出,再根据勾股定理得出DE;(3)首先连接,过点作,得出,再得,进而得出,然后构建二次函数,即可得出其最大值.【题目详解】(1)证明:连接∵∴∵平分∴∴∴∵∴又∵是的半径∴与相切(2)解:连接∵AB为直径∴∠ADB=90°∵∴∴∴∴中(3)连接,过点作于∵,DE⊥AE,AD=AD∴∴,DE=DG∴∴∴即:∴∴根据二次函数知识可知:当时,【题目点拨】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.24、(1);(2);(3)点为或【分析】⑴根据,求出B、C的坐标,再代入求出解析式;⑵根据题意可证△PED∽△BOC,再利用相似三角形的面积比等于相似比的平方求出△PED的面积;⑶根据二次函数图象的性质及切线性质构造相似三角形来求出点M的坐标.点M在直线BC的上方或在直线BC的下方两种情况来讨论.【题目详解】解:(1),,,点为,点为代入得:,(2)当时,,点坐标为,点坐标为,点坐标为直线解析式为,平行于轴,点坐标为平行于轴,,,,与的面积之比是对应边与的平方,的面积为,的面积是(3)过点作于点,过点作于点,,与直线相切,,设点的坐标为如图1,点的坐标为代入直线得解得,点的坐标为或图1如图2,点的坐标为代入直线得方程无解综上,点为或图2【题目点拨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东省安全员C证考试(专职安全员)题库及答案
- 江西省安全员-C证考试(专职安全员)题库附答案
- 贵州省建筑安全员B证考试题库及答案
- 吉林建筑大学《微生物与人类疾病》2023-2024学年第一学期期末试卷
- 《不同拉伸参数的神经松动术对大鼠坐骨神经损伤后轴突再生及NGF的影响》
- 机场建设安全施工标准协议
- 矿山地质施工报告范文
- 吉林工程技术师范学院《管理信息系统开发》2023-2024学年第一学期期末试卷
- 吉林电子信息职业技术学院《证券投资模拟交易实验》2023-2024学年第一学期期末试卷
- 吉林大学《数学分析方法》2023-2024学年第一学期期末试卷
- 有机植物生产中允许使用的投入品
- 岩石力学与工程课后习题与思考解答
- 劳务合同模板电子下载(个人劳务合同范本免费下载)
- 东北大学材料科学基础历年考研试题及答案
- 施工现场临时用电验收表参考模板范本
- 中央空调竣工验收报告中央空调竣工验收报告八篇
- 古希腊文明智慧树知到答案章节测试2023年
- 宣州谢朓楼饯别校书叔云【精品课件】-A3演示文稿设计与制作【微能力认证优秀作业】
- GB/T 28799.2-2020冷热水用耐热聚乙烯(PE-RT)管道系统第2部分:管材
- 设计图纸(文件)清单
- 施工现场监控设备安装验收单
评论
0/150
提交评论