版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省蚌埠市禹会区九年级数学第一学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,某物体由上下两个圆锥组成,其轴截面中,,.若下部圆锥的侧面积为1,则上部圆锥的侧面积为()A. B. C. D.2.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=-2m B.n=- C.n=-4m D.n=-3.将一元二次方程配方后所得的方程是()A. B.C. D.4.关于的一元二次方程,则的条件是()A. B. C. D.5.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大6.某商场将进货价为45元的某种服装以65元售出,平均每天可售30件,为了尽快减少库存,商场决定采取适当的降价措施,调查发现:每件降价1元,则每天可多售5件,如果每天要盈利800元,每件应降价()A.12元 B.10元 C.11元 D.9元7.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数501001502005008001000合格频数4288141176448720900估计出售2000件衬衣,其中次品大约是()A.50件 B.100件 C.150件 D.200件8.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A. B. C. D.9.如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度()A.变大 B.变小 C.不变 D.不能确定10.已知⊙O的半径为5cm,点P在⊙O上,则OP的长为()A.4cm B.5cm C.8cm D.10cm二、填空题(每小题3分,共24分)11.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__________米.12.如图,已知等边的边长为,顶点在轴正半轴上,将折叠,使点落在轴上的点处,折痕为.当是直角三角形时,点的坐标为__________.13.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.15.抛物线y=x2+2x﹣3的对称轴是_____.16.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为_____.17.关于的一元二次方程有一个解是,另一个根为_______.18.已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离(单位:米)与行驶时间(单位:秒)满足下面的函数关系:.那么测试实验中该汽车从开始刹车到完全停止,共行驶了_________米.三、解答题(共66分)19.(10分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.20.(6分)如图,∠MON=60°,OF平分∠MON,点A在射线OM上,P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.(1)依题意补全图形;(2)判断线段AB,PB之间的数量关系,并证明;(3)连接AP,设,当P和Q两点都在射线ON上移动时,是否存在最小值?若存在,请直接写出的最小值;若不存在,请说明理由.21.(6分)如图,已知反比例函数(k1>0)与一次函数相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.22.(8分)为给诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?(2)一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、、、,在同一个平面内,点、、在同一条直线上,且,问建筑物高为多少米?23.(8分)如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长.24.(8分)如图,在中,,.用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;连接AO,求证:AO平分.25.(10分)如图,平面直角坐标系中,点、点在轴上(点在点的左侧),点在第一象限,满足为直角,且恰使∽△,抛物线经过、、三点.(1)求线段、的长;(2)求点的坐标及该抛物线的函数关系式;(3)在轴上是否存在点,使为等腰三角形?若存在,求出所有符合条件的点的坐标,若不存在,请说明理由.26.(10分)学校准备建一个矩形花圃,其中一边靠墙,另外三边用周长为30米的篱笆围成.已知墙长为18米,设花圃垂直于墙的一边长为x米,花圃的面积为y平方米.(1)求出y与x的函数关系式,并写出x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?
参考答案一、选择题(每小题3分,共30分)1、C【分析】先证明△ABD为等边三角形,得到AB=AD=BD,∠A=∠ABD=∠ADB=60°,由求出∠CBD=∠CDB=30°,从而求出BC和BD的比值,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到上部圆锥的侧面积.【题目详解】解:∵∠A=60°,AB=AD,
∴△ABD为等边三角形,
∴AB=AD=BD,∠A=∠ABD=∠ADB=60°,∵∠ABC=90°,
∴∠CBD=30°,而CB=CD,
∴△CBD为底角为30°的等腰三角形,过点C作CE⊥BD于点E,易得BD=2BE,∵∠CBD=30°,∴BE:BC=:2,∴BD:BC=:2=:1,即AB:BC=:1,∵上面圆锥与下面圆锥的底面相同,
∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,
∴下面圆锥的侧面积=.
故选:C.【题目点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.2、B【解题分析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(,n),点B的坐标为(-,-n),根据图像知B、C的横坐标相同,可得-=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.3、B【分析】严格按照配方法的一般步骤即可得到结果.【题目详解】∵,∴,∴,故选B.【题目点拨】解答本题的关键是掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4、C【解题分析】根据一元二次方程的定义即可得.【题目详解】由一元二次方程的定义得解得故选:C.【题目点拨】本题考查了一元二次方程的定义,熟记定义是解题关键.5、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【题目详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【题目点拨】此题考查反比例函数的性质,熟记性质并运用解题是关键.6、B【分析】设应降价x元,根据题意列写方程并求解可得答案.【题目详解】设应降价x元则根据题意,等量方程为:(65-x-45)(30+5x)=800解得:x=4或x=10∵要尽快较少库存,∴x=4舍去故选:B.【题目点拨】本题考查一元二次方程利润问题的应用,需要注意最后有2个解,需要按照题干要求舍去其中一个解.7、D【分析】求出次品率即可求出次品数量.【题目详解】2000×(件).故选:D.【题目点拨】本题考查了样本估计总体的统计方法,求出样本的次品率是解答本题的关键.8、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【题目详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为.故答案为A.【题目点拨】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.9、C【分析】四边形PAOB是扇形OMN的内接矩形,根据矩形的性质AB=OP=半径,所以AB长度不变.【题目详解】解:∵四边形PAOB是扇形OMN的内接矩形,
∴AB=OP=半径,
当P点在弧MN上移动时,半径一定,所以AB长度不变,
故选:C.【题目点拨】本题考查了圆的认识,矩形的性质,用到的知识点为:矩形的对角线相等;圆的半径相等.10、B【分析】根据点与圆的位置关系解决问题即可.【题目详解】解:∵点P在⊙O上,∴OP=r=5cm,故选:B.【题目点拨】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.二、填空题(每小题3分,共24分)11、54【解题分析】设建筑物的高为x米,根据题意易得△CDG∽△ABG,∴,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得,即,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.12、,【解题分析】当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=,由此可求出OA′的长,也就能求出A′E的长,据此可求出A′的坐标;当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,根据三角函数的关系列出方程即可求解x,从而求出A’的坐标.【题目详解】当A′E∥x轴时,△OA′E是直角三角形,故∠A′OE=60°,A′E=AE,设A′的坐标为(0,b),∴AE=A′E=A’Otan60°=b,OE=2b,b+2b=2+,∴b=1,A′的坐标是(0,1);当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,∵∠AOB=60°,∴A’E=OEtan60°=x=-x解得x=∴A’O=2OE=∴A’(0,)综上,A’的坐标为,.【题目点拨】此题主要考查图形与坐标,解题的关键是熟知等边三角形的性质、三角函数的应用.13、【分析】根据“左加右减、上加下减”的原则进行解答即可.【题目详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为,
故答案为:【题目点拨】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.14、50(1﹣x)2=1.【解题分析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.15、x=﹣1【分析】直接利用二次函数对称轴公式求出答案.【题目详解】抛物线y=x2+2x﹣3的对称轴是:直线x=﹣=﹣=﹣1.故答案为:直线x=﹣1.【题目点拨】此题主要考查了二次函数的性质,正确记忆二次函数对称轴公式是解题关键.16、2π【解题分析】通过分析图可知:△ODB经过旋转90°后能够和△OCA重合(证全等也可),因此图中阴影部分的面积=扇形AOB的面积-扇形COD的面积,所以S阴=π×(9-1)=2π.【题目详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故答案为2π.【题目点拨】本题中阴影部分的面积可以看作是扇形AOB与扇形COD的面积差,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.17、【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值;把m的值代入一元二次方程中,求出x的值,即可得出答案.【题目详解】解:把x=0代入方程(m+2)x2+3x+m2-4=0得到m2-4=0,解得:m=±2,∵m-2≠0,∴m=-2,当m=-2时,原方程为:-4x2+3x=0解得:x1=0,x2=,则方程的另一根为x=.【题目点拨】本题主要考查对一元二次方程的解,解一元二次方程等知识点的理解和掌握,能求出m的值是解此题的关键.18、1【分析】此题利用配方法求二次函数最值的方法求解即可;【题目详解】∵,∴汽车刹车后直到停下来前进了1m.故答案是1.【题目点拨】本题主要考查了二次函数最值应用,准确化简计算是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)1.【分析】(1)先根据正方形的性质、直角三角形的性质得出,再加上一组直角相等,根据相似三角形的判定定理即可得证;(2)先根据正方形的性质、中点的性质求出AE的长,再根据勾股定理求出BE的长,最后根据相似三角形的性质、线段的和差即可得.【题目详解】(1)∵四边形ABCD为正方形,且;(2)∵四边形ABCD为正方形,点E为AD的中点在中,由(1)知,,即故的长为1.【题目点拨】本题考查了正方形的性质、勾股定理、相似三角形的判定定理与性质等知识点,较难的是题(2),由题(1)的结论联系到利用相似三角形的性质是解题关键.20、(1)补全图形见解析;(2)AB=PB.证明见解析;(3)存在,.【分析】(1)根据题意补全图形如图1,
(2)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;
(3)连接BQ.只要证明△ABP∽△OBQ,即可推出,由∠AOB=30°,推出当BA⊥OM时,的值最小,最小值为,由此即可解决问题.【题目详解】解:(1)如图1,
(2)AB=PB.证明:如图,连接BQ.∵BC的垂直平分OQ,∴OB=BQ,∴∠BOP=∠BQP.又∵OF平分∠MON,∴∠AOB=∠BOP.∴∠AOB=∠BQP.又∵PQ=OA,∴△AOB≌△PQB,∴AB=PB.(3))∵△AOB≌△PQB,
∴∠OAB=∠BPQ,
∵∠OPB+∠BPQ=180°,
∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,
∵∠MON=60°,
∴∠ABP=120°,
∵BA=BP,
∴∠BAP=∠BPA=30°,
∵BO=BQ,
∴∠BOQ=∠BQO=30°,
∴△ABP∽△OBQ,
∴,
∵∠AOB=30°,
∴当BA⊥OM时,的值最小,最小值为,
∴k=.【题目点拨】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.21、(1);;(2)B点的坐标为(-2,-1);当0<x<1和x<-2时,y1>y2.【分析】(1)根据tan∠AOC==2,△OAC的面积为1,确定点A的坐标,把点A的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B的坐标,观察图象,得到当x为何值时,反比例函数y1的值大于一次函数y2的值.【题目详解】解:(1)在Rt△OAC中,设OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1(负值舍去).∴A点的坐标为(1,2).把A点的坐标代入中,得k1=2.∴反比例函数的表达式为.把A点的坐标代入中,得k2+1=2,∴k2=1.∴一次函数的表达式.(2)B点的坐标为(-2,-1).当0<x<1和x<-2时,y1>y2.【题目点拨】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.22、(1)m(2)米【解题分析】分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN的长;(2)在RT△BMK中,求得BK=MK=50米,从而求得EM=84米;在RT△HEM中,求得,继而求得米.详解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB长米,M是AB的中点,∴AM=(米),∴AF=MF=AM•cos∠AMF=(米),在中,∵斜坡AN的坡比为∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),
EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休闲平台DE的长是米;建筑物GH高为米.点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.23、(1),D;(2)是直角三角形,见解析;(3),.【分析】(1)直接将(−1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别求出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,求出直线的解析式,可得M点坐标,然后易求此时△ACM的周长.【题目详解】解:(1)∵点在抛物线上,∴,解得:.∴抛物线的解析式为,∵,∴顶点的坐标为:;(2)是直角三角形,证明:当时,∴,即,当时,,解得:,,∴,∴,,,∵,,,∴,∴是直角三角形;(3)如图所示:BC与对称轴交于点M,连接,根据轴对称性及两点之间线段最短可知,此时的值最小,即周长最小,设直线解析式为:,则,解得:,故直线的解析式为:,∵抛物线对称轴为∴当时,,∴,最小周长是:.【题目点拨】此题主要考查了二次函数综合应用、利用轴对称求最短路线以及勾股定理的逆定理等知识,得出M点位置是解题关键.24、(1)作图见解析;(2)证明见解析.【分析】(1)作线段AB的垂直平分线即可,线段AB的垂直平分与BC的交点即是圆心O;(2)由线段垂直平分线的性质可得∠OAB=∠B=30°,,从而可求∠CAO=30°,由角平分线的定义可知AO平分∠CAB.【题目详解】(1)解:如图,⊙O为所作;(2)证明:∵OA=OB,∴∠OAB=∠B=30°,而∠CAB=90°﹣∠B=60°,∴∠CAO=∠BAO=30°,∴OC平分∠CAB.【题目点拨】本题考查了线段垂直平分线的作法及性质,等腰三角形的性质,角平分线的定义,熟练掌握线段垂直平分线的作法及性质是解答本题的关键.25、(1)OB=6,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冲压安全管理制度规定
- 2024年福建客运资格证模拟考试题库下载电子版
- 2024年陕西旅客运输从业资格证考试题库
- 吉首大学《化工环境保护概论》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷1
- 吉林艺术学院《流行音乐演唱录音实践Ⅲ》2021-2022学年第一学期期末试卷
- 2024年供应协议书模板合同模板下载
- 吉林师范大学《篆书理论与技法I》2021-2022学年第一学期期末试卷
- 2024年大学助研聘用合同范本
- 2024年大水面出租转让合同范本
- 急性心肌梗死科普
- 乡镇落后表态发言
- 2023-2024学年广东省茂名市小学数学五年级上册期末评估考试题
- 汉服特征,形制与分类
- SMT行业PLM和MES系统整体解决方案
- 小学三年级下册综合实践活动.节约用水从我做起-(25张)ppt
- 0927高一【语文(统编版)】第三单元起始课-课件
- 丘吉尔英文介绍课件
- 数字化转型促进中心建设工程实施方案
- 探究影响滑动摩擦力大小的因素实验说课课件
- 室上性心动过速的鉴别诊断课件
评论
0/150
提交评论