版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省文山县数学九上期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列命题中,正确的个数是()①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A.2个 B.3个 C.4个 D.5个2.在Rt△ABC中,∠C=90°,AC=4,BC=3,则是A. B. C. D.3.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)708090100110学生人数(人)472072A.众数是90分钟 B.估计全校每天做书面家庭作业的平均时间是89分钟C.中位数是90分钟 D.估计全校每天做书面家庭作业的时间超过90分钟的有9人4.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.5.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个 B.4个 C.5个 D.6个6.能判断一个平行四边形是矩形的条件是()A.两条对角线互相平分 B.一组邻边相等C.两条对角线互相垂直 D.两条对角线相等7.如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为()A.2 B. C.4 D.8.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:49.下列说法正确的是()A.垂直于半径的直线是圆的切线 B.经过三个点一定可以作圆C.圆的切线垂直于圆的半径 D.每个三角形都有一个内切圆10.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=012.已知反比例函数y=kx的图象经过点P(﹣2,3A.(﹣1,﹣6) B.(1,6) C.(3,﹣2) D.(3,2)二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.14.计算的结果是_______.15.如图,是的直径,点和点是上位于直径两侧的点,连结,,,,若的半径是,,则的值是_____________.16.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x轴、y轴的交点分别为A,B,点P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0;②x=3是ax2+bx+3=0的一个根;③△PAB周长的最小值是+3.其中正确的是________.17.如图,△ABC是边长为2的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作;取中点,作∥,∥,得到四边形,它的面积记作.照此规律作下去,则=____________________.18.某一建筑物的楼顶是“人”字型,并铺上红瓦装饰.现知道楼顶的坡度超过0.5时,瓦片会滑落下来.请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?________.(填“会”或“不会”)三、解答题(共78分)19.(8分)如图,在△ABC中,∠C=90°,P为AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,(1)试证明:△AEP∽△ABC;(2)求y与x之间的函数关系式.20.(8分)解方程:(x+3)2=2x+1.21.(8分)2018年12月1日,贵阳地铁一号线正式开通,标志着贵阳中心城区正式步入地铁时代,为市民的出行带来了便捷,如图是贵阳地铁一号线路图(部分),菁菁与琪琪随机从这几个站购票出发.(1)菁菁正好选择沙冲路站出发的概率为(2)用列表或画树状图的方法,求菁菁与琪琪出发的站恰好相邻的概率.22.(10分)某企业设计了一款工艺品,每件成本40元,出于营销考虑,要求每件售价不得低于40元,但物价部门要求每件售价不得高于60元.据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每涨1元,每天就少售出2件,设单价上涨元.(1)求当为多少时每天的利润是1350元?(2)设每天的销售利润为,求销售单价为多少元时,每天利润最大?最大利润是多少?23.(10分)在一次篮球拓展课上,,,三人玩篮球传球游戏,游戏规则是:每一次传球由三人中的一位将球随机地传给另外两人中的某一人.例如:第一次由传球,则将球随机地传给,两人中的某一人.(1)若第一次由传球,求两次传球后,球恰好回到手中的概率.(要求用画树状图法或列表法)(2)从,,三人中随机选择一人开始进行传球,求两次传球后,球恰好在手中的概率.(要求用画树状图法或列表法)24.(10分)如图为一机器零件的三视图.(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)25.(12分)已知关于x的一元二次方程.(1)当m为何值时,方程有两个不相等的实数根?(2)设方程两根分别为、,且2、2分别是边长为5的菱形的两条对角线,求m的值.26.关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。方程两根的情况对应的二次函数的大致图象满足的条件方程有两个不相等的负实根①_______方程有两个不相等的正实根②③____________(1)请将表格中①②③补充完整;(2)已知关于的方程,若方程的两根都是正数,求的取值范围.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【题目详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A.【题目点拨】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.2、A【分析】根据题意画出图形,由勾股定理求出AB的长,再根据三角函数的定义解答即可.【题目详解】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∴sinA=,故选A.【题目点拨】本题考查锐角三角函数的定义.关键是熟练掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【题目详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即=90,正确;C、平均时间为:×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【题目点拨】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.4、C【解题分析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.5、B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【题目详解】依题意可得所以需要4块;故选:B【题目点拨】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6、D【分析】根据矩形的判定进行分析即可;【题目详解】选项A中,两条对角线互相平分是平行四边形,故选项A错误;选项B中,一组邻边相等的平行四边形是菱形,故选项B错误;选项C中,两条对角线互相垂直的平行四边形是菱形,故选项C错误;选项D中,两条对角线相等的平行四边形是矩形,故选项D正确;故选D.【题目点拨】本题主要考查了矩形的判定,掌握矩形的判定是解题的关键.7、D【分析】连接OB、OC,证明△OBC是等边三角形,得出即可求解.【题目详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴,故选:D.【题目点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.8、A【解题分析】试题解析:∵ED∥BC,故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.9、D【分析】根据与圆有关的基本概念依次分析各项即可判断.【题目详解】A.垂直于半径且经过切点的直线是圆的切线,注意要强调“经过切点”,故本选项错误;
B.经过不共线的三点一定可以作圆,注意要强调“不共线”,故本选项错误;C.圆的切线垂直于过切点的半径,注意强调“过切点”,故本选项错误;
D.每个三角形都有一个内切圆,本选项正确,故选D.【题目点拨】本题考查了有关圆的切线的判定与性质,解答本题的关键是注意与圆有关的基本概念中的一些重要字词,学生往往容易忽视,要重点强调.10、C【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【题目详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【题目点拨】考点:1、中心对称图形;2、轴对称图形11、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【题目详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【题目点拨】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12、C【解题分析】先根据点(-2,3),在反比例函数y=k的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【题目详解】∵反比例函数y=kx的图象经过点(﹣2,3)∴k=2×3=-6,A.∵(-6)×(-1)=6≠-6,∴此点不在反比例函数图象上;B.∵1×6=6≠-6,∴此点不在反比例函数图象上;C.∵3×(-2)=-6,∴此点在反比例函数图象上;D.∵3×2=6≠-6,∴此点不在反比例函数图象上。故答案选:C.【题目点拨】本题考查的知识点是反比例函数图像上点的坐标特点,解题的关键是熟练的掌握反比例函数图像上点的坐标特点.二、填空题(每题4分,共24分)13、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【题目详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE为Rt△ACB斜边的中线,∴,在△CEM中,,即,∴CM的最大值为.故答案为:.【题目点拨】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.14、【分析】根据分式的加减运算法则,先通分,再加减.【题目详解】解:原式====.故答案为:.【题目点拨】本题考查了分式的加减运算,解题的关键是掌握运算法则和运算顺序.15、【分析】根据题意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【题目详解】解:∵是的直径,∴∠ADB=90°∴∠ACD=∠ABD∵的半径是,,∴故答案为:【题目点拨】本题考查的是锐角三角函数值.16、①②③【分析】①根据对称轴方程求得的数量关系;②根据抛物线的对称性知抛物线与x轴的另一个交点的横坐标是3;③利用两点间线段最短来求△PAB周长的最小值.【题目详解】①根据图象知,对称轴是直线,则,即,故①正确;②根据图象知,点A的坐标是,对称轴是,则根据抛物线关于对称轴对称的性质知,抛物线与轴的另一个交点的坐标是,所以是的一个根,故②正确;
③如图所示,点关于对称的点是,即抛物线与轴的另一个交点.
连接与直线x=1的交点即为点,此时的周长最小,
则周长的最小值是的长度.
∵,
∴,,∴周长的最小值是,故③正确.
综上所述,正确的结论是:①②③.
故答案为:①②③.【题目点拨】本题考查的是二次函数综合题,涉及到二次函数图象与系数的关系,二次函数图象的性质以及两点之间直线最短.解答该题时,充分利用了抛物线的对称性.17、【分析】先求出△ABC的面积,再根据中位线性质求出S1,同理求出S2,以此类推,找出规律即可得出S2019的值.【题目详解】∵△ABC是边长为2的等边三角形,∴△ABC的高=∴S△ABC=,∵E是BC边的中点,ED∥AB,∴ED是△ABC的中位线,∴ED=AB∴S△CDE=S△ABC,同理可得S△BEF=S△ABC∴S1=S△ABC==,同理可求S2=S△BEF=S△ABC==,以此类推,Sn=·S△ABC=∴S2019=.【题目点拨】本题考查中位线的性质和相似多边形的性质,熟练运用性质计算出S1和S2,然后找出规律是解题的关键.18、不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案.【题目详解】∵∆ABC是等腰三角形,AB=AC=13m,AH⊥BC,∴CH=BC=12m,∴AH=m,∴楼顶的坡度=,∴这一楼顶铺设的瓦片不会滑落下来.故答案是:不会.【题目点拨】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键.三、解答题(共78分)19、(1)见解析;(2)y=.(0<x<6.4)【分析】(1)可证明△APE和△ACB都是直角三角形,还有一个公共角,从而得出:△AEP∽△ABC;(2)由勾股定理得出BC,再由相似,求出PE=x,,即可得出y与x的函数关系式.【题目详解】(1)∵PE⊥AB,∴∠APE=90°,又∵∠C=90°,∴∠APE=∠C,又∵∠A=∠A,∴△AEP∽△ABC;(2)在Rt△ABC中,AB=10,AC=8,∴BC=,由(1)可知,△APE∽△ACB∴,又∵AP=x,即,∴PE=x,,∴=.(0<x<6.4)【题目点拨】本题考查了相似三角形的性质问题,掌握相似三角形的性质以及判定定理是解题的关键.20、x1=﹣3,x2=﹣1.【分析】利用因式分解法解方程即可.【题目详解】(x+3)2=2(x+3),(x+3)2﹣2(x+3)=0,(x+3)(x+3﹣2)=0,(x+3)(x+1)=0,∴x1=﹣3,x2=﹣1.21、(1);(2)【分析】(1)根据概率公式,即可求解;(2)记火车站为A,沙冲路为B,望城坡为C,新村为D,然后采用列表法列出所有可能的情况,找出满足条件的情况,即可得出其概率.【题目详解】(1)P(选择沙冲路站出发)=;(2)记火车站为A,沙冲路为B,望城坡为C,新村为D列表如下:由图可知共有16种等可能情况,满足条件的情况是6种P(菁菁与琪琪出发的站恰好相邻)=【题目点拨】此题主要考查概率的求解,熟练掌握,即可解题.22、(1)时,每天的利润是1350元;(2)单价为60元时,每天利润最大,最大利润是1600元【分析】(1)根据每天的利润=单件的利润×销售数量列出方程,然后解方程即可;(2)根据每天的利润=单件的利润×销售数量表示出每天的销售利润,再利用二次函数的性质求最大值即可.【题目详解】(1)由题意得,即,解得:,∵物价部门要求每件不得高于60元,∴,即时每天的利润是1350元;(2)由题意得:,∵抛物线开口向下,对称轴为,在对称轴左侧,随的增大而增大,且,∴当时,(元),当时,售价为(元),∴单价为60元时,每天利润最大,最大利润是1600元.【题目点拨】本题主要考查一元二次方程和二次函数的应用,掌握一元二次方程的解法和二次函数的性质是解题的关键.23、(1),树状图见解析;(2),树状图见解析【分析】(1)用树状图表示所有可能情况,找出符合条件的情况,求出概率即可.(2)用树状图表示所有可能情况,找出符合条件的情况,求出概率即可.【题目详解】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股票配资账户风险评估合同
- 事业编公务员考试(面试)题库资料(按分类)-人际关系、事务处理类(重点题)
- 应急预案费买卖合同
- 家电买卖协议模板
- 变电站绿化维护施工方案
- 写字楼租赁安全责任合同
- 担保联盟协议
- 软件开发贷款合同
- 2024年中国醇溶性聚酰胺树脂市场调查研究报告
- 高性能计算设备租赁协议模板
- 停车场租赁服务方案(技术方案)
- 译林版五年级上册英语期中调研测试卷(含答案)
- 城市轨道综合实训总结报告
- 软件模块化设计与开发标准与规范
- 2023年易助ERP系统-界面操作培训教程
- (正式版)SHT 3223-2024 石油化工给水排水泵站设计规范
- MOOC 计量学基础-中国计量大学 中国大学慕课答案
- 少儿美术《白桦林》课件
- 监控维修施工方案
- 7-12个月婴幼儿教案
- 2024年湖南省张家界市桑植县中考一模道德与法治试题
评论
0/150
提交评论