天津高考数试题(文)(解析)_第1页
天津高考数试题(文)(解析)_第2页
天津高考数试题(文)(解析)_第3页
天津高考数试题(文)(解析)_第4页
天津高考数试题(文)(解析)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年普通高等学校招生全国统一考试(天津卷)数学(文史类)第I卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合,,则=()(A) (B) (C) (D)【答案】A【解析】试题分析:,选A.考点:集合运算(2)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()(A) (B) (C) (D)【答案】A考点:概率(3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B考点:三视图(4)已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为()(A)(B)(C)(D)【答案】A考点:双曲线渐近线(5)设,,则“”是“”的()(A)充要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件【答案】C【解析】试题分析:,所以充分性不成立;,必要性成立,故选C考点:充要关系(14)已知函数在R上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是_________.【答案】【解析】试题分析:由函数在R上单调递减得,又方程恰有两个不相等的实数解,所以,因此的取值范围是考点:函数综合三、解答题:本大题共6小题,共80分.(15)(本小题满分13分)在中,内角所对应的边分别为a,b,c,已知.(Ⅰ)求B;(Ⅱ)若,求sinC的值.【答案】(Ⅰ)(Ⅱ)考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理(16)(本小题满分13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【答案】(Ⅰ)详见解析(Ⅱ)生产甲种肥料车皮,乙种肥料车皮时利润最大,且最大利润为万元试题解析:(Ⅰ)解:由已知满足的数学关系式为,该二元一次不等式组所表示的区域为图1中的阴影部分.考点:线性规划(17)(本小题满分13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF||AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60º,G为BC的中点.(Ⅰ)求证:FG||平面BED;(Ⅱ)求证:平面BED⊥平面AED;(Ⅲ)求直线EF与平面BED所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)(Ⅱ)证明:在中,,由余弦定理可,进而可得,即,又因为平面平面平面;平面平面,所以平面.又因为平面,所以平面平面.(Ⅲ)解:因为,所以直线与平面所成角即为直线与平面所成角.过点作于点,连接,又因为平面平面,由(Ⅱ)知平面,所以直线与平面所成角即为.在中,,由余弦定理可得,所以,因此,在中,,所以直线与平面所成角的正弦值为.考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角(18)(本小题满分13分)已知是等比数列,前n项和为,且.(Ⅰ)求的通项公式;(Ⅱ)若对任意的是和的等差中项,求数列的前2n项和.【答案】(Ⅰ)(Ⅱ)(Ⅱ)解:由题意得,即数列是首项为,公差为的等差数列.设数列的前项和为,则考点:等差数列、等比数列及其前项和(19)(本小题满分14分)设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.【答案】(Ⅰ)(Ⅱ)(2)设直线的斜率为,则直线的方程为,设,由方程组消去,整理得,解得或,由题意得,从而,由(1)知,设,有,,考点:椭圆的标准方程和几何性质,直线方程(20)(本小题满分14分)设函数,,其中(Ⅰ)求的单调区间;(Ⅱ)若存在极值点,且,其中,求证:;(Ⅲ)设,函数,求证:在区间上的最大值不小于.【答案】(Ⅰ)递减区间为,递增区间为,.(Ⅱ)详见解析(Ⅲ)详见解析【解析】试题分析:(Ⅰ)先求函数的导数:,再根据导函数零点是否存在情况,分类讨论:=1\*GB3①当时,有恒成立,所以的单调增区间为.=2\*GB3②当时,存在三个单调区间试题解析:(1)解:由,可得,下面分两种情况讨论:=1\*GB3①当时,有恒成立,所以的单调增区间为.=2\*GB3②当时,令,解得或.当变化时,、的变化情况如下表:0单调递增极大值单调递减极小值单调递增所以的单调递减区间为,单调递增区间为,.(2)证明:因为存在极值点,所以由(1)知且.由题意得,即,进而,又,且,由题意及(1)知,存在唯一实数满足,且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论