山西省临汾市华望中学高二数学文测试题含解析_第1页
山西省临汾市华望中学高二数学文测试题含解析_第2页
山西省临汾市华望中学高二数学文测试题含解析_第3页
山西省临汾市华望中学高二数学文测试题含解析_第4页
山西省临汾市华望中学高二数学文测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市华望中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若则是成立的A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:B略2.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0参考答案:C【考点】不等关系与不等式.【分析】x,y∈R,且x>y>0,可得:,sinx与siny的大小关系不确定,<,lnx+lny与0的大小关系不确定,即可判断出结论.【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.3.若是定义在上的可导函数,且满足,则必有

参考答案:D4.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。其中正确的命题是()A.①② B.①③ C.②③ D.①②③参考答案:C【分析】根据空间向量的基底判断②③的正误,找出反例判断①命题的正误,即可得到正确选项.【详解】解:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;这是正确的.③已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.故选:C.【点睛】本题考查共线向量与共面向量,考查学生分析问题,解决问题的能力,是基础题.5.执行如图所示的程序框图,若输入的值为6,则输出的值为A.105

B.16

C.15

D.1参考答案:C6.用1,2,3,4四个数字组成没有重复数字的三位数,共有A.81个 B.64个 C.24个 D.12个

参考答案:C7.用反证法证明命题:“一个三角形中,至少有一个内角不小于60°”时,应假设A.三角形中至多有一个内角不小于60°

B.三角形中三个内角都小于60°C.三角形中至少有一个内角不大于60°D.三角形中一个内角都大于60°参考答案:B8.命题”若,则”的逆否命题是(

)A.若,则x≥1或x≤-1

B.若,则C.若x>1或x<-1,则

D.若x≥1或x≤-1,则参考答案:D9.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5? C.k>6? D.k>7?参考答案:A【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K

S

是否继续循环循环前1

1/第一圈2

4

是第二圈3

11

是第三圈4

26

是第四圈5

57

否故退出循环的条件应为k>4故答案选A.10.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1] B.[,] C.[,1) D.[,]参考答案:B【考点】椭圆的简单性质.【分析】设左焦点为F′,根据椭圆定义:|AF|+|AF′|=2a,根据B和A关于原点对称可知|BF|=|AF′|,推知|AF|+|BF|=2a,又根据O是Rt△ABF的斜边中点可知|AB|=2c,在Rt△ABF中用α和c分别表示出|AF|和|BF|代入|AF|+|BF|=2a中即可表示出即离心率e,进而根据α的范围确定e的范围.【解答】解:∵B和A关于原点对称∴B也在椭圆上设左焦点为F′根据椭圆定义:|AF|+|AF′|=2a又∵|BF|=|AF′|∴|AF|+|BF|=2a

…①O是Rt△ABF的斜边中点,∴|AB|=2c又|AF|=2csinα

…②|BF|=2ccosα

…③②③代入①2csinα+2ccosα=2a∴=即e==∵a∈[,],∴≤α+π/4≤∴≤sin(α+)≤1∴≤e≤故选B二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的准线方程是

参考答案:12.在一次射击训练中,某战士连续射击了两次.设命题p是“第一次射击击中目标”,q是“第二次射击击中目标”.则命题“两次都没有击中目标”用p,q及逻辑联结词可以表示为

.参考答案:¬p∧¬q【考点】随机事件.【专题】计算题;转化思想;综合法;简易逻辑.【分析】根据已知中,命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,进而可以表示出两次都没有击中目标.【解答】解:据题,两次都没有击中目标,可以表示为:¬p∧¬q,故答案为:¬p∧¬q.【点评】本题重点考查了事件的表示方法,对于逻辑联接词的理解与把握,属于基础题.13.若复数(为虚数单位),则||=

.参考答案:试题分析:因,故,应填.考点:复数的概念及运算.14.若O为ABC内部任意一点,边AO并延长交对边于A′,则,同理边BO,CO并延长,分别交对边于B′,C′,这样可以推出++=;类似的,若O为四面体ABCD内部任意一点,连AO,BO,CO,DO并延长,分别交相对面于A′,B′,C′,D′,则+++=.参考答案:2,3.【分析】(1)根据=,推得,,然后求和即可;(2)根据所给的定理,把面积类比成体积,求出+++的值即可.【解答】解:(1)根据=推得,所以++===2(2)根据所给的定理,把面积类比成体积,可得+++===3故答案为:2,3.15.椭圆的焦点、,P为椭圆上的一点,已知,则△的面积为

。参考答案:9

16.若P为椭圆上任意一点,EF为圆的任意一条直径,则的取值范围是

.参考答案:[5,21]因为.又因为椭圆的,N(1,0)为椭圆的右焦点,∴∴.故答案为:[5,21].

17.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为圆;③,则双曲线与的离心率相同;④已知两定点和一动点P,若,则点P的轨迹关于原点对称;其中真命题的序号为

(写出所有真命题的序号)

参考答案:②③④略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.参考答案:【考点】复合命题的真假.【分析】分别求出命题p、q为真命题时m的范围,根据复合命题真值表可得命题p,q命题一真一假,分p真q假和p假q真求出m的范围,再求并集.【解答】解:∵方程表示焦点在x轴上的双曲线,∴?m>2若p为真时:m>2,∵曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,则△=(2m﹣3)2﹣4>0?m>或m,若q真得:或,由复合命题真值表得:若p∧q为假命题,p∨q为真命题,p,q命题一真一假

若p真q假:;

若p假q真:∴实数m的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件.19.已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.参考答案:【考点】利用导数求闭区间上函数的最值;函数解析式的求解及常用方法;奇函数.【分析】(Ⅰ)由f'(x)=3ax2+2x+b得g(x)=fax2+(3a+1)x2+(b+2)x+b,再由函数g(x)是奇函数,由g(﹣x)=﹣g(x),利用待系数法求解.(2)由(1)知,再求导g'(x)=﹣x2+2,由g'(x)≥0求得增区间,由g'(x)≤0求得减区间;求最值时从极值和端点值中取.【解答】解:(1)由题意得f'(x)=3ax2+2x+b因此g(x)=f(x)+f'(x)=ax3+(3a+1)x2+(b+2)x+b因为函数g(x)是奇函数,所以g(﹣x)=﹣g(x),即对任意实数x,有a(﹣x)3+(3a+1)(﹣x)2+(b+2)(﹣x)+b=﹣[ax3+(3a+1)x2+(b+2)x+b]从而3a+1=0,b=0,解得,因此f(x)的解析表达式为.(2)由(Ⅰ)知,所以g'(x)=﹣x2+2,令g'(x)=0解得则当时,g'(x)<0从而g(x)在区间,上是减函数,当,从而g(x)在区间上是增函数,由前面讨论知,g(x)在区间[1,2]上的最大值与最小值只能在时取得,而,因此g(x)在区间[1,2]上的最大值为,最小值为.20.在平面直角坐标系xOy中,曲线C1的参数方程为(为参数,),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求C2的直角坐标方程;(2)当C1与C2有两个公共点时,求实数t的取值范围.参考答案:(1);(2).【分析】(1)在极坐标方程中,把展开凑出,即可化得直角坐标方程.(2)把的参数方程化成普通方程,可得是半圆,是直线,由有两个公共点可求出的取值范围.【详解】(1)对于曲线的极坐标方程,可得,即,曲线的直角坐标方程为.(2)曲线的参数方程为(为参数,),化为普通方程得,为下半圆.如图,当直线与曲线相切时,由,解得或(舍去).当直线过点时,.综上所述,实数的取值范围为.【点睛】本题考查极坐标与参数方程的综合问题,考查极坐标与直角坐标方程、参数方程与普通方程的互化,直线与圆的位置关系.在极坐标方程中凑出,即可化得直角坐标方程.21.已知在直角坐标系xOy中,圆锥曲线C的参数方程为(为参数),定点,F1、F2分别是圆锥曲线C的左、右焦点.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求经过点F1且平行于直线AF2的直线l的极坐标方程;(2)设(1)中直线l与圆锥曲线C交于M,N两点,求.参考答案:(1)圆锥曲线的参数方程为(为参数),所以普通方程为:……2分

……4分直线极坐标方程为:……6分(2)直线的参数方程是(为参数),……8分代入椭圆方程得……9分……10分……12分22.已知某厂生产x件产品的总成本为f(x)=25000+200x+(元).(1)要使生产x件产品的平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?参考答案:【考点】函数模型的选择与应用.【专题】应用题.【分析】(1)先根据题意设生产x件产品的平均成本为y元,再结合平均成本的含义得出函数y的表达式,最后利用导数求出此函数的最小值即可;(2)先写出利润函数的解析式,再利用导数求出此函数的极值,从而得出函数的最大值,即可解决问题:要使利润最大,应生产多少件产品.【解答】解:(1)设生产x件产品的平均成本为y元,则(2分)(3分)令y'=0,得x1=1000,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论