版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省荆州市名校数学九年级第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,平行四边形的顶点,在轴上,顶点在上,顶点在上,则平行四边形的面积是()A. B. C. D.2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个 B.4个 C.1个 D.2个3.如图,为的直径,点为上一点,,则劣弧的长度为()A. B.C. D.4.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.245.如图,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则∠A的度数为()A.60° B.70° C.50° D.45°6.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是()A.1 B.3 C.-1 D.-37.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.若生产的产品一天的总利润为1120元,且同一天所生产的产品为同一档次,则该产品的质量档次是()A.6 B.8 C.10 D.128.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A. B. C. D.9.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为()A.1 B.2 C. D.10.己知点都在反比例函数的图象上,则()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.12.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,1.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.13.分式方程的解是__________.14.一元二次方程x2﹣5x=0的两根为_________.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.16.若记表示任意实数的整数部分,例如:,,…,则(其中“+”“-”依次相间)的值为______.17.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.18.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.三、解答题(共66分)19.(10分)已知如下图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点,按照的规律变换得到,请你在图1中画出.(2)在图2中画出一个与格点相似但相似比不等于1的格点.(说明:顶点都在网格线交点处的三角形叫做格点三角形.)20.(6分)对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和,,所以.(1)计算:,;(2)小明在计算时发现几个结果都为正整数,小明猜想所有的均为正整数,你觉得这个猜想正确吗?请判断并说明理由;(3)若,都是“相异数”,其中,(,,、都是正整数),当时,求的最大值.21.(6分)如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且A₁B₁C位于点C的异侧,并表示出点A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.(3)在(2)的条件下求出点B经过的路径长(结果保留π).22.(8分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.23.(8分)如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点.将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点.连结AC,BC,CD,设点A的横坐标为t,(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段CD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出符合上述条件的点坐标,24.(8分)抛物线经过点O(0,0)与点A(4,0),顶点为点P,且最小值为-1.(1)求抛物线的表达式;(1)过点O作PA的平行线交抛物线对称轴于点M,交抛物线于另一点N,求ON的长;(3)抛物线上是否存在一个点E,过点E作x轴的垂线,垂足为点F,使得△EFO∽△AMN,若存在,试求出点E的坐标;若不存在请说明理由.25.(10分)如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为1.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)求反比例函数y=与直线y=x+m的函数关系式(2)求梯形ABCD的面积.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,再根据反比例函数系数k的几何意义,求得△ABE的面积=△COD的面积相等=|k2|,△AOE的面积=△CBD的面积相等=|k1|,最后计算平行四边形的面积.【题目详解】解:过点A作AE⊥y轴于点E,过点C作CD⊥y轴于点D,根据∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE与S△COD相等,又∵点C在的图象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四边形OABC的面积=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故选D.【题目点拨】本题主要考查了反比例函数系数k的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.2、D【分析】根据菱形的判定定理判断即可.【题目详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.【题目点拨】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.3、A【分析】根据“直径所对圆周角为90°”可知为直角三角形,在可求出∠BAC的正弦值,从而得到∠BAC的度数,再根据圆周角定理可求得所对圆心角的度数,最后利用弧长公式即可求解.【题目详解】∵AB为直径,AO=4,∴∠ACB=90°,AB=8,在中,AB=8,BC=,∴sin∠BAC=,∵sin60°=,∴∠BAC=60°,∴所对圆心角的度数为120°,∴的长度=.故选:A.【题目点拨】本题考查弧长的计算,明确圆周角定理,锐角三角函数及弧长公式是解题关键,注意弧长公式中的角度指的是圆心角而不是圆周角.4、C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【题目详解】解:∵菱形的对角线互相垂直且平分,∴勾股定理求出菱形的边长=5,∴菱形的周长=20,故选C.【题目点拨】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.5、A【分析】根据圆内接四边形的性质,构建方程解决问题即可.【题目详解】设∠BAD=x,则∠BOD=2x,∵∠BCD=∠BOD=2x,∠BAD+∠BCD=180°,∴3x=180°,∴x=60°,∴∠BAD=60°.故选:A.【题目点拨】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题.6、B【分析】直接根据根与系数的关系求解.【题目详解】由题意知:,,∴原式=2-(-1)=3故选B.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则,.7、A【分析】设该产品的质量档次是x档,则每天的产量为[95﹣5(x﹣1)]件,每件的利润是[6+2(x﹣1)]元,根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其小于等于10的值即可得出结论.【题目详解】设该产品的质量档次是x档,则每天的产量为[95﹣5(x﹣1)]件,每件的利润是[6+2(x﹣1)]元,根据题意得:[6+2(x﹣1)][95﹣5(x﹣1)]=1120,整理得:x2﹣18x+72=0,解得:x1=6,x2=12(舍去).故选A.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8、C【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【题目详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为=;故选:C.【题目点拨】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,9、C【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知和AD=,利用勾股定理,可得,列出方程,即可求出OD的长.【题目详解】解:连接OC,BC,过点O作OD⊥AC于D,∴∠ADO=90°,∵AB为的直径,AB=4,,∴∠ACB=90°,OA=OC=,∴OD//BC,∴,∴AD=,在中,,∴,解得OD=;故选C.【题目点拨】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.10、D【解题分析】试题解析:∵点A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函数y=的图象上,∴y1=-;y1=-1;y3=,
∵>->-1,
∴y3>y1>y1.
故选D.二、填空题(每小题3分,共24分)11、80【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【题目详解】解:∵BC是⊙O的切线,
∴∠ABC=90°,
∴∠A=90°-∠ACB=40°,
由圆周角定理得,∠BOD=2∠A=80°.【题目点拨】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.12、【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.【题目详解】根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有1种结果,所以两次摸出的小球标号相同的概率是,故答案为.【题目点拨】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
错因分析中等难度题.失分的原因有两个:(1)没有掌握放回型和不放回型概率计算的区别;(2)未找全标号相同的可能结果.
13、【分析】等式两边同时乘以,再移项即可求解.【题目详解】等式两边同时乘以得:移项得:,经检验,x=2是方程的解.故答案为:.【题目点拨】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.14、0或5【解题分析】分析:本题考查的是一元二次方程的解法——因式分解法.解析:故答案为0或5.15、【题目详解】∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中点,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.16、-22【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算.【题目详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以=1-2+3-4+…+43-44=-22【题目点拨】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.17、1【分析】根据一元二次方程的解的定义即可求出答案.【题目详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=1.故答案为:1.【题目点拨】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.18、100【解题分析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.三、解答题(共66分)19、(2)详见解析;(2)详见解析【分析】(2)按题中要求,把图形上的每个关键点图2中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A2B2C2单位后,依次连接各个关键点,即可得出要画的图形;(2)根据平移作图的规律作图即可做个位似图形即可,相似比可以是2:2.【题目详解】(2)如图2.(2)如图2.(答案不唯一)【题目点拨】本题考查了作图-平移变换、作图-位似图形,根据要求作图是解题的关键.20、(1)10;12.(2)猜想正确.理由见解析;(3).【分析】(1)根据“相异数”的定义即可求解;(2)设的三个数位数字分别为,,,根据“相异数”的定义列出即可求解;(3)根据,都是“相异数”,得到,,根据求出x,y的值即可求解.【题目详解】(1);.(2)猜想正确.设的三个数位数字分别为,,,即,.因为,,均为正整数,所以任意为正整数.(3)∵,都是“相异数”,∴;.∵,∴,∴,∵,,且,都是正整数,∴或或或,∵是“相异数”,∴;∵是“相异数”,∴,∴满足条件的有,或,或,∴或或,∴的最大值为.【题目点拨】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.21、(1)见解析,A1(3,﹣3);(2)见解析;(3)【分析】(1)延长BC到B1,使B1C=2BC,延长AC到A1,使A1C=2AC,再顺次连接即可得△A1B1C,再写出A1坐标即可;(2)分别作出A,B绕C点顺时针旋转90°后的对应点A2,B2,再顺次连接即可得△A2B2C.(3)点B的运动路径为以C为圆心,圆心角为90°的弧长,利用弧长公式即可求解.【题目详解】解:(1)如图,△A1B1C为所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C为所作;(3)CB=,所以点B经过的路径长=π.【题目点拨】本题考查网格作图与弧长计算,熟练掌握位似与旋转作图,以及弧长公式是解题的关键.22、(1)证明见解析;(2)【分析】(1)根据三角形内角和证明即可证明三角形相似,(2)根据相似三角形对应边成比例即可解题.【题目详解】(1)证明:,(2)由得:【题目点拨】本题考查了相似三角形的判定和性质,中等难度,熟悉证明三角形相似的方法是解题关键.23、(2)CF=2;(2)①;②;(3)点的坐标为:(22,2),(8,2),(2,2).【分析】(2)由Rt△ABO∽Rt△CAF即可求得CF的长.(2)①点C落在线段CD上,可得Rt△CDD∽Rt△BOD,从而可求t的值.②由于当点C与点E重合时,CE=2,,因此,分和两种情况讨论.(3)分三种情况作出图形讨论即可得到答案.【题目详解】解:(2)当t=2时,OA=2,∵点B(0,2),∴OB=2.又∵∠BAC=900,AB=2AC,∴Rt△ABO∽Rt△CAF.∴,CF=2.(2)①当OA=t时,∵Rt△ABO∽Rt△CAF,∴.∴.∵点C落在线段CD上,∴Rt△CDD∽Rt△BOD.∴,整理得.解得(舍去).∴当时,点C落在线段CD上.②当点C与点E重合时,CE=2,可得.∴当时,;当时,.综上所述,S与t之间的函数关系式为.(3)(3)点的坐标为:(22,2),(8,2),(2,2).理由如下:如图2,当时,点的坐标为(22,0),根据,为拼成的三角形,此时点的坐标为(22,,2).如图2,当点与点A重合时,点的坐标为(8,0),根据,为拼成的三角形,此时点的坐标为(8,,2).如图3,当时,点的坐标为(2,0),根据,为拼成的三角形,此时点的坐标为(2,,2).∴点的坐标为:(22,2),(8,2),(2,2).24、(1)抛物线的表达式为,(或);(1);(3)抛物线上存在点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【分析】(1)由点O(0,0)与点A(4,0)的纵坐标相等,可知点O、A是抛物线上的一对对称点,所以对称轴为直线x=1,又因为最小值是-1,所以顶点为(1,-1),利用顶点式即可用待定系数法求解;(1)设抛物线对称轴交轴于点D、N(,),先求出=45°,由ON∥PA,依据平行线的性质得到=45°,依据等腰直角三角形两直角边的关系可得到=,解出即可得到点N的坐标,再运用勾股定理求出ON的长度;(3)先运用勾股定理求出AM和OM,再用ON-OM得MN,运用相似三角形的性质得到EF:FO的值,设E(,),分点E在第一象限、第二或四象限讨论,依据EF:FO=1:1列出关于m的方程解出即可.【题目详解】解:(1)∵抛物线经过点O(0,0)与点A(4,0),∴对称轴为直线x=1,又∵顶点为点P,且最小值为-1,,∴顶点P(1,-1),∴设抛物线的表达式为将O(0,0)坐标代入,解得∴抛物线的表达式为,即;(1)设抛物线对称轴交轴于点D,∵顶点P坐标为(1,-1),∴点D坐标为(1,0)又∵A(4,0),∴△ADP是以为直角的等腰直角三角形,=45°又∵ON∥PA,∴=45°∴若设点N的坐标为(,)则=解得,∴点N的坐标为(,)∴(3)抛物线上存在一个点E,使得△EFO∽△AMN,理由如下:连接PO、AM,∵=45°,=90°,∴,又∵由点D坐标为(1,0),得OD=1,∴,又∵=90°,由A(4,0),D(1,0)得AD=1,∴,同理可得,∴,∴AM:MN=:=1:1∵△EFO∽△AMN∴EF:FO=AM:MN=1:1设点E的坐标为(,)(其中),①当点E在第一象限时,,解得,此时点E的坐标为(,),②当点E在第二象限或第四象限时,,解得,此时点E的坐标为(,)综上所述,抛物线上存在一个点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【题目点拨】本题是二次函数综合题,考查了运用待定系数法求解析式,运用勾股定理求线段长度,二次函数中相似的存在性问题,解题的关键是用点的坐标求出线段长度,并根据线段之间的关系,建立方程解出得到点的坐标.25、(1)y=,y=x-4(2)s=6.5【解题分析】考点:反比例函数综合题.分析:(1)由于反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),则把A(6,2)分别代入两个解析式可求出k与b的值,从而确定反比例函数y=与直线y=x+m的函数关系式;(2)先把点A的横坐标为2,点B的横坐标为1代入y=x-4中得到对应的纵坐标,则可确定A点坐标为(2,-2),点B的坐标为(1,-1),由AD、BC平行于y轴可得点D的横坐标为2,点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阀架的课程设计
- 镇痛镇静规范化治疗
- 四川中药插画课程设计
- 锅炉报警系统 课程设计
- 锅炉安全阀课程设计
- 财政税收改革方案
- 钢结构预算 课程设计
- 外伤包扎培训课程设计
- 创业管理系统课程设计
- 博物馆经营与管理现状
- 201809早教商业模式与竞争力专题光明地平线bfam剖析中国2b业务实践思考
- 水驱气藏开发特点与开发技术
- 桥架支架计算表格-精准版
- 高中物理知识点讲解-高中物理中常用的数学知识
- 常远鄂博小品视频-常远鄂博小品《玲儿想丁当》台词剧本
- 9_公司中层干部能力素质360度评估表
- CP243-1使用指南
- 个人不良贷款清收案例3篇
- 三年级数学重量计算应用题
- 学生如何互评作文
- 概述(高速磁悬浮)完整版
评论
0/150
提交评论