版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结构力学
第4章实体三铰拱
结构力学
第4章实体三铰拱主要内容1拱结构基本概念2三铰拱的解析法3三铰拱的合理拱轴线4三铰刚架的计算主要内容1拱结构基本概念§4.1基本概念§4.1基本概念拱结构指杆的轴线为曲线,且在竖向荷载的作用下能产生水平推力的结构。拱与梁的区别(1)拱的轴线为曲线,而梁一般为直线(有时也有曲线的);(2)拱在竖向荷载的作用下能产生水平推力,而梁不能。例如:水平推力的存在,是拱结构区别于梁的一个重要标志。因此,通常又把拱结构称为推力结构。直梁曲梁拱拱结构指杆的轴线为曲线,且在竖向荷载的作用下能产生水平推力的工程中常见的拱结构形式有无铰拱在带拉杆的三铰拱中,拉杆的内力代替了支座的水平推力,因此,在竖向荷载的作用下支座只产生竖向反力,结构内部的受力与拱完全一样。三铰拱二铰拱带拉杆的三铰拱带拉杆的三铰拱工程中常见的拱结构形式有无铰拱在带拉杆的三拱的专业术语拱趾
拱两端支座称为拱趾;拱顶
拱中间的最高点称为拱顶;
矢高拱顶到两支座连线的竖向距离f称为矢高;矢跨比
矢高f与跨度l之比f/l,称为矢跨比。矢跨比是拱的基本参数,工程中大多数为f/l=(1
0.1)。
拱结构的优缺点:优点缺点需比梁更坚固基础或支承结构,外形比梁复杂,施工难度较大。(1)较为省材料,自重减轻,能跨越较大的空间;(2)由于有水平推力的存在,其各个截面上的弯矩比相应的曲梁或梁要小,因此可利用抗压性能好、抗拉性能差的材料(如砖、石、混凝土等)来建造。fl拱的专业术语拱趾拱两端支座称为拱趾;矢高拱顶到两支座连线§4.2三铰拱的解析法§4.2三铰拱的解析法曲梁部分在材料力学中已讲过,主要应注意截面选取应与曲梁的轴向相垂直。这里主要介绍三铰拱的有关计算。三铰拱为静定拱,下面以两拱趾在同一水平线上的平拱(两拱趾不在同一水平线上方法一样)为例介绍三铰拱的反力及内力计算。(1)支座反力的计算
如图所示三铰拱由∑X=0得AClBl1l2Fp1Fp2Fpna1a2anb1b2bnfVBVAHAHB曲梁部分在材料力学中已讲过,主要应注意截面选由补充方程MC=0得(考虑左半部分拱)我们来分析与之相对应的简支梁对于简支梁易得比较可知AClBl1l2Fp1Fp2Fpna1a2anb1b2bnfVBVAHAHBVB0VA0ABFp1Fp2FpnCKK由补充方程MC=0得(考虑左半部分拱)我们来分析与之相对由上式可知,推力等于相应简支梁截面C的弯矩MC0除以矢高f,在一定荷载作用下,推力只与三个铰的位置有关,而与各铰间的拱轴曲线形式无关。(4-1)由于推力与矢高f成反比关系,因此,拱愈低推力愈大,当f
0时,推力H
。此时A、B、C三铰在同一直线上,成为瞬变体系。AClBl1l2Fp1Fp2Fpna1a2anb1b2bnfVBVAHAHBVB0VA0ABFp1Fp2FpnCKK由上式可知,推力等于相应简支梁截面C的弯矩(2)任一K的内力的计算用截面法可求出拱任一截面的内力。对于任一截面K取研究对象如图(b)所示。K拱的任一截面内力符号规定为:弯矩M,使拱内纤维受拉的为正;剪力FQ,对隔离体产生顺时针矩的为正(与梁相同),轴力FN,受压为正。
∵∴(4-2)MKyKxKVAHxyFp1FQKFNK
KK图(b)VA0Fp1F0QKAClBl1l2Fp1Fp2Fpna1a2anb1b2bnfVBVAHAHB(2)任一K的内力的计算用截面法可求出拱任∵∴(4-3)(3)三铰拱的内力图有了上述任意截面的内力方程,不难画出其内力图。与梁刚架类似,在集中力作用处,FNK和FQK图将突变,在集中力偶作用处,M图将突变。由于拱轴为曲线,可采用描点法来作内力图。下面举例说明。所有的力向FNK方向投影得所有的力向FQK方向投影得图(c)VA0Fp1F0QKMKyKxKVAHxyFp1FQKFNK
KK∵∴(4-3)(3)三铰拱的内力图有了上述任例1
三铰拱及受载如图示,求支反力并作内力图。解
(1)求支座反力(2)求内力方程AC段:4mxAC4mB8m4mq=1kN/mFp=4kNDyHVBVAHABFpCqD相应简支梁VB0VA0例1三铰拱及受载如图示,求支反力并作内力图。解(1)求CD段:DB段:上述各式中4mxAC4mB8m4mq=1kN/mFp=4kNDyCD段:DB段:上述各式中4mxAC4mB8m4mq=1k利用上述方程可以求出任一截面的内力,为了方便绘图,通常列表求出有限个截面的内力数值,然后根据表中数据,采用描点法即可得到内力图(有限个截面选取时要注意,有些关键截面——内力突变截面不要漏掉)。若八等分,则计算结果如下表所示。截面几何参数截面内力
截面x/my/m
/
M/kN.mFQ/kNFN/kN1004500.719.19221.7536.871.50.47.80343.0026.57206.70463.7514.041.5-0.496.06581000-1.006.006103.75-14.04-0.50.496.067123.00-26.572左:1.79左:5.81右:-1.79右:7.608141.75-36.87-0.5-0.47.89160-4500.77.78利用上述方程可以求出任一截面的内力,为了方便123456789M图(kN.m)1.521.50.520.5FQ图(kN)0.710.40.491.00.491.791.790.40.70⊕Ө⊕FN图(kN)9.197.86.76.066.06.065.817.67.87.78注意:在FQ=0处,M图有极值;在集中力作用处,FQ图和FN图均发生突变。123456789M图(kN.m)1.521.50.520.§4.3三铰拱的合理拱轴线§4.3三铰拱的合理拱轴线合理拱轴线在固定荷载作用下,使拱处于无弯矩状态时的拱轴线,称为合理拱轴线。
因此,若拱轴为合理拱轴线,根据定义,则任一截面有即(4-4)这就是合理拱轴线应满足的方程。下面举例说明如何确定合理拱轴线。合理拱轴线在固定荷载作用下,使拱处于无弯矩状态时的拱轴线,称xy例2
对称三铰拱受载如图示,求其合理拱轴线。解
建立如图所示坐标系相应简支梁任一截面的弯矩方程为∵∴代入(4-4)式即得合理拱轴线为(4-4)qACBlfxy例2对称三铰拱受载如图示,求其合理拱轴线。解例3
求图示对称三铰拱的合理拱轴线。其上所受的分布荷载为q=qd+.y(
为填料的容重)。解由于荷载q也与拱轴的形状有关,故此时无法直接应用(4-4)式。∵∴注意:也与拱轴形状有关,即也是x的函数,这里仅是近似处理,形状的微小改变,对水平推力的影响较小,忽略不计。∵∴(a)(4-4)fACBlxyqqdq=qd+
.y(x)例3求图示对称三铰拱的合理拱轴线。其上所受的分布荷载为q整理可得(b)式的解可由双曲函数表示为(b)其中
(c)或(d)边界条件为:由边界条件得:代回(d)式得上式表明,三铰拱在填土重量的作用下,合理拱轴线为一悬链线。整理可得(b)式的解可由双曲函数表示为(b)其中例4
图示三铰拱沿拱轴的法向受均布压力,试证明合理拱轴线为圆弧线。证明因为q不是竖向荷载,不能直接应用(4-4)式。设拱轴的曲率半径为
,取出为段ds为研究对象。如图示FN
FQMFN+dFNFQ+dFQM+dMoxyd
由∑X=0得∵d
很小∴(a)因此(a)式整理可得(b)(4-4)ACqB例4图示三铰拱沿拱轴的法向受均布压力,试证明合理拱轴线为由∑Y=0得(c)上式整理可得(d)由得(e)上式整理可得(f)当拱轴为合理轴线时,有M=0,由(f)式知,FQ=0;将其代回(d)式知,FN=常数;由(b)式知,
=FN/q=常数。故当拱轴为合理轴线时,其曲率半径
为常数。证毕(b)FN
FQMFN+dFNFQ+dFQM+dMoxyd
分析:由∑Y=0得(c)上式整理可得(d)由§4.4三铰刚架的计算§4.4三铰刚架的计算三铰刚架是杆轴线为折线形式的推力结构。它的支座反力计算与三铰拱一样,而内力的计算与刚架相同。下面举例说明。例5
如图示对称刚架,作M图。解法一:可把此结构视为由虚铰A
和B
实铰C相连的三铰刚架。利用所求虚铰的约束反力,可求出虚铰中各链杆的内力。B
VA
A
fHHVB
FE11ABCDGH33331q=1kN/m
(长度单位m)图(a)VA
0VB
0图(b)三铰刚架是杆轴线为折线形式的推力结构。它的支VA
A
HVAFNDE图(c)由图(c)得B
HVB
VBFNDF图(d)由图(d)得这样可求得刚架的受力如图(e)所示。ABCEFGq=1kN/mVAVBFNDEFNDE图(e)H杆端弯矩:VAAHVAFNDE图(c)由图(c)得BHVB作弯矩图:如图(f)所示。5.7
4.2
解法二:求约束反力时,也可取AC、BC两刚片分别作为研究对象如图(g)所示。考虑图(g)左半部分,由∑MA´=0得考虑图(g)右半部分,由∑MB´=0得(a)(b)联立(a)和(b)解得M图(kN.m)
图(f)1×12/8=0.125
1×32/8=1.125
ABCEFGq=1kN/mVAVBFNDEFNDE图(g)HCVCVCHCHCA´B´M图(kN.m)
图(f)5.7
4.2
11×12/8=0.125
1×32/8=1.125
作弯矩图:如图(f)所示。5.74.2解法二:求约束反力杆端弯矩:
作弯矩图:如图(f)所示。ABCEFGq=1kN/mVAVBFNDEFNDE图(g)HCVCVCHCHCA´B´5.7
4.2
M图(kN.m)
图(f)1×12/8=0.125
1×32/8=1.125
M图(kN.m)
图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电动绞车机课程设计
- 2024-2030年中国老居家护理行业竞争格局与销售动态预测报告
- 2024-2030年中国磁控管行业发展现状及应用前景预测研究报告
- 2024-2030年中国痘痘贴行业竞争状况及消费需求预测研究报告
- 2024-2030年中国玻璃钢风机行业未来趋势与应用前景预测报告
- 2024-2030年中国湿式氢氧化铝行业供需态势及发展前景预测报告
- 2024-2030年中国氯甲酸环戊酯行业现状态势及前景趋势预测研究报告
- 2024-2030年中国房室综合症监测行业发展状况与投资趋势预测报告
- 2024-2030年中国固体甲醇钠行业发展趋势与需求规模预测报告
- 2024-2030年中国加热丝市场需求量分析与竞争格局预测研究报告
- 集合论和逻辑
- 审查易系统操作指南
- 拼音四线三格A4打印版
- 机械专业职业生涯发展报告
- 当代世界经济与政治教案
- 超宽带无线通信技术在无人机领域的应用
- 2024年度医院中医生殖科带教计划课件
- 部编版道德与法治五年级上册中华民族一家亲第一课时课件
- 智能制造系统的优化与控制
- 中国银联行业报告
- 气浮机使用说明书
评论
0/150
提交评论