版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
随机事件的概率第1课时导入新课讲授新课当堂练习课堂小结
1.理解一个事件概率的意义.2.会在具体情境中求出一个事件的概率.(重点)3.会进行简单的概率计算及应用.(难点)学习目标必然事件:在一定条件下必然发生的事件.不可能事件:在一定条件下不可能发生的事件.随机事件:在一定条件下可能发生也可能不发生的事件.导入新课问题
回顾一下上节课学到的“必然事件”“不可能事件”“随机事件”的定义?复习引入明天会下雨!随机事件守株待兔随机事件发生的可能性究竟有多大?能否用数值来刻画呢?随机事件我可没我朋友那么笨呢!撞到树上去让你吃掉,你好好等着吧,哈哈!随机事件的可能性的大小一袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.
(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?答:可能是白球也可能是黑球.答:摸出黑球的可能性大.合作探究讲授新课【结论】由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.球的颜色黑球白球
摸取次数
53想一想:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?答:可以.例如:白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.
一般地,1.随机事件发生的可能性是有大小的;2.不同的随机事件发生的可能性的大小有可能不同.随机事件的特点要点归纳例1
有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:_________________.④②<③<①<④②例2
一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.
盒子中有大小、质地完全相同的5个球,其中3个是白球,2个是黄球.从中任意摸出1个球,事件A=“摸到白球”,B=“摸到黄球”.1.直观猜测:事件A和B发生的可能性大小相同吗?概率的概念二互动探究2.动手试验:分组做摸球试验,每摸出1个球,记下球的颜色后放回盒子中,搅匀后再进行下一次摸球.每组重复25次试验,记录事件A和B发生的次数.3.汇总数据:汇总各组的摸球结果并填写下表:事件A=“摸到白球”B=“摸到黄球”合计画“正”字计数发生的次数(频数)占试验总次数的百分比(频率)4.分析数据:思考:事件A和B发生的次数占试验总次数百分比的大小有什么规律?5.发现规律:思考:能用两个数分别刻画事件A和B发生的可能性大小吗?做n次重复试验,如果事件A发生了m次,那么数m叫做事件A发生的频数,比值
叫做事件A发生的频率.思考:
1.在上面“互动探究”的摸球试验中,任意摸出1个球,有几种可能的结果?摸到每个球的可能性大小是否相同?能不能用数值刻画摸到每个球的可能性大小?2.你能用数值刻画摸到红球的可能性大小吗?3.你能用数值刻画摸到黄球的可能性大小吗?概率的定义:我们用一个数刻画随机事件A发生的可能性大小,这个数叫做事件A的概率,记作P(A).
如果一个试验有n种等可能的结果,事件A包含其中的k种结果,那么事件A发生的概率为P(A)=.要点归纳∴
特别的注意01事件发生的可能性越来越大事件发生的可能性越来越小不可能事件必然事件概率的值事件发生的概率越大,该事件就越有可能发生.例3:有10张正面分别写有1,2,…,10的卡片,背面图案相同.将卡片背面朝上充分混匀后,从中随机抽取1张卡片,得到一个数.设A=“得到的数是5”,B=“得到的数是偶数”,C=“得到的数能被3整除”,求事件A,B,C发生的概率.解:试验共有10种可能结果,每个数被抽到的可能性相等,则A包含1种可能结果,B包含5种可能结果,C包含3种可能结果.所以P(A)=,P(B)==,P(C)=.概率的简单应用三1.在一个箱子中放有1个白球和1个红球,它们除颜色外,大小、质地都相同.现从箱子中随机取出1个球,每个球被取到的可能性一样大吗?__________.合作探究2.那么我们可以用哪个数来表示取到红球的可能性?__________.3.取到白球的可能性是多大呢?__________.一样大摸球试验
现有一个能自由转动的游戏转盘,红、黄、绿3个扇形的圆心角度数均为120°,让转盘自由转动,当它停止后,指针指向的区域可能是红色、黄色、绿色这3种情况中的1种.试问这3种情况出现的可能性大小一样吗?___________.转盘试验一样指针指向这三个区域的可能性大小是多少呢?__________.⑴度量三角形内角和,结果是360°.⑵正常情况下水加热到100°C,就会沸腾.⑶掷一个正面体的骰子,向上的一面点数为6.⑷经过城市中某一有交通信号灯的路口,遇到红灯.(5)某射击运动员射击一次,命中靶心.(不可能事件)(必然事件)(随机事件)(随机事件)(随机事件)1.指出下列事件中哪些事件是必然事件,哪些事件是不可以事件,哪些事件是随机事件.当堂练习2.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=
.3.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于
B.等于
C.小于D.三种情况都有可能4A4.
桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?解:(1)不能确定;
(2)黑桃;
(3)可以,去掉一张黑桃或增加一张红桃.解:(1)向上一面点数是6的可能有1种,
所以P(点数为6)=.(2)向上一面点数小于3的可能有1,2,共2种,所以P(点数小于3)=.(3)向上一面点数是质数的可能有2,3,5,共3种,所以P(点数是质数)=.5.抛一个普通的正方体骰子,观察向上一面的点数,求下列事件的概率.(1)点数为6;(2)点数小于3;(3)点数为质数.概率定义适用对象计算公式一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).
等可能事件,其特点:(1)有限个;(2)可能性一样.课堂小结导入新课讲授新课当堂练习课堂小结第2课时随机事件的概率
1.能判断某事件的每个结果出现的可能性是否相等;2.会进行简单的概率计算及应用.(难点)学习目标
老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?我们一起来做游戏导入新课情境引入讲授新课概率的简单计算及应用
同时掷两枚硬币,试求下列事件的概率:
(1)两枚硬币两面一样;
(2)一枚硬币正面朝上,一枚硬币反面朝上;①②探索交流“掷两枚硬币”所有结果如下:正正正反反正反反①②①②①②①②解:(1)两枚硬币两面一样包括两面都是正面,两面都是反面,共两种情形;所以学生赢的概率是(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正,正反两种情形;所以老师赢的概率是∵P(学生赢)=P(老师赢).∴这个游戏是公平的.典例精析
例1
一副扑克牌除去“大小王”后共有52张,充分洗匀后从中任意抽取1张牌.(1)抽到红心牌的概率是多大?(2)抽到A牌的概率是多大?(3)抽到红色牌的概率是多大?.解:从52张扑克牌中任意抽取1张牌,共有52种等可能的结果,气走抽到红心牌的结果有13种,抽到A牌的结果有4种,抽到红色牌(红心牌13张、方块牌13张)的结果有26种.所以
P(抽到红心牌);
P(抽到A牌);P(抽到红色牌).
例2
如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.解:一共有7种等可能的结果.(1)指向红色有3种结果,
P(指向红色)=_____;(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=_____;(3)不指向红色有4种等可能的结果
P(不指向红色)=______.想一想
把这个例中的(1)、(3)两问及答案联系起来,你有什么发现?“指向红色或不指向红色”是必然事件,其概率为1.例3话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着今天由谁来刷碗,可半天也没个好主意.还是悟空聪明,他灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子:
如果掷到2的倍数就由八戒来刷碗;
如果掷到3就由沙僧来刷碗;
如果掷到7的倍数就由我来刷碗;
徒弟三人洗碗的概率分别是多少!例4
如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是;
B区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B区域的任一方格,遇到地雷的概率是;
由于>,即点击A区域遇到地雷的可能性大于点击B区域遇到地雷的可能性,因而第二步应该点击B区域.例5
已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.(1)求从箱中随机取出一个球是白球的概率是多少?(2)如果随机
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年广告装饰项目协议范本版
- 2024年商业协作合同示例(2)1
- 授权签订2024年度版权许可合同的委托书
- 2024年度股权转让涉及大数据分析合同3篇
- 2024年度室内设计作品展览与出版合同3篇
- 2022外科医生实习参考心得体会5篇
- 2024年度量子计算机研发项目合同书2篇
- 二零二四年度城市商业综合体委托租赁合同2篇
- 2024年大功率激光传输石英光纤项目合作计划书
- 2024 年标准小时工派遣协议范本版B版
- 2024年新建住宅小区地下停车场管理承包合同
- 2024中国中信金融资产管理股份有限公司北京市分公司招聘笔试核心备考题库及答案解析
- GB/T 44713-2024节地生态安葬服务指南
- 一年级家长会课件2024-2025学年
- 国开(浙江)2024年《个人理财》形考作业1-4答案
- 2024年教资考试时政高频考点141条
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 装修设计需求模版
- 欠薪清零台账
- 住房公积金单位网上业务申请表
- 关于严肃换届纪律加强换届风气监督的通知PPT教育课件
评论
0/150
提交评论