版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市名校2024届九年级数学第一学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤2.计算的值是()A. B. C. D.3.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. B. C. D.4.已知反比例函数的表达式为,它的图象在各自象限内具有y随x的增大而增大的特点,则k的取值范围是().A.k>-2 B. C. D.5.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.266.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-3,0) B.(-2,0) C.(-4,0)或(-2,0) D.(-4,0)7.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米8.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.9.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点M是边BC上一动点(不与B、C重合).过点M的双曲线(x>0)交AB于点N,连接OM、ON.下列结论:①△OCM与△OAN的面积相等;②矩形OABC的面积为2k;③线段BM与BN的长度始终相等;④若BM=CM,则有AN=BN.其中一定正确的是()A.①④ B.①② C.②④ D.①③④10.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.抛物线y=(x﹣3)2﹣2的顶点坐标是_____.12.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.13.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.14.方程的解是________.15.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:苹果损坏的频率0.1060.0970.1010.0980.0990.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.16.若点A(a,b)在双曲线y=上,则代数式ab﹣4的值为_____.17.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为______.18.如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为.三、解答题(共66分)19.(10分)定义:已知点是三角形边上的一点(顶点除外),若它到三角形一条边的距离等于它到三角形的一个顶点的距离,则我们把点叫做该三角形的等距点.(1)如图1:中,,,,在斜边上,且点是的等距点,试求的长;(2)如图2,中,,点在边上,,为中点,且.①求证:的外接圆圆心是的等距点;②求的值.20.(6分)(1)(教材呈现)下图是华师版九年级上册数学教材第77页的部分内容.请根据教材提示,结合图23.4.2,写出完整的证明过程.(2)(结论应用)如图,△ABC是等边三角形,点D在边AB上(点D与点A、B不重合),过点D作DE∥BC交AC于点E,连结BE,M、N、P分别为DE、BE、BC的中点,顺次连结M、N、P.①求证:MN=PN;②∠MNP的大小是.21.(6分)如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.22.(8分)如图所示,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长.23.(8分)如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于点D,且AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图②,求图①中A,B两点间的距离.24.(8分)从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.25.(10分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).26.(10分)某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价元,回答下列问题:(1)该商场每天售出衬衫件(用含的代数式表示);(2)求的值为多少时,商场平均每天获利1050元?(3)该商场平均每天获利(填“能”或“不能”)达到1250元?
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【题目详解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根据勾股定理,BM=过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a-=,MK=-a=,
在Rt△MKO中,MO=根据正方形的性质,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.故选:D【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.2、A【解题分析】先算cos60°=,再计算即可.【题目详解】∵∴故答案选A.【题目点拨】本题考查特殊角的三角函数值,能够准确记忆60°角的余弦值是解题的关键.3、D【解题分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【题目详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故选:D.【题目点拨】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.4、C【分析】先根据反比例数的图象在每一象限内y随x的增大而增大得出关于k的不等式,求出k的取值范围即可.【题目详解】解:∵反比例数的图象在每一象限内y随x的增大而增大,
∴<0,解得k<-1.
故选:C.【题目点拨】本题考查的是反比例函数的性质,熟知反比例函数(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键5、B【分析】由平行四边形的性质得出,,,即可求出的周长.【题目详解】四边形ABCD是平行四边形,,,,的周长.故选B.【题目点拨】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.6、A【解题分析】此题根据切线的性质以及勾股定理,把要求PQ的最小值转化为求AP的最小值,再根据垂线段最短的性质进行分析求解.【题目详解】连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,则根据垂线段最短,则作AP⊥x轴于P,即为所求作的点P;此时P点的坐标是(-3,0).故选A.【题目点拨】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.7、C【解题分析】解:∵sin∠C=,∴AB=AC•sin∠C=200sin20°.故选C.8、A【解题分析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.9、A【分析】根据k的几何意义对①②作出判断,根据题意对②作出判断,设点M的坐标(m,),点N的坐标(n,),从而得出B点的坐标,对③④作出判断即可【题目详解】解:根据k的几何意义可得:△OCM的面积=△OAN的面积=,故①正确;∵矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,没有其它条件,∴矩形OABC的面积不一定为2k,故②不正确∵设点M的坐标(m,),点N的坐标(n,),则B(n,),∴BM=n-m,BN=∴BM不一定等于BN,故③不正确;若BM=CM,则n=2m,∴AN=,BN=,∴AN=BN,故④正确;故选:A【题目点拨】考查反比例函数k的几何意义以及反比例函数图像上点的特征,矩形的性质,掌握矩形的性质和反比例函数k的几何意义是解决问题的前提.10、A【分析】先根据角平分线的定义、圆周角定理可得,再根据相似三角形的判定定理得出,然后根据相似三角形的性质即可得.【题目详解】平分弧BD与弧CD相等又,即解得故选:A.【题目点拨】本题考查了角平分线的定义、圆周角定理、相似三角形的判定定理与性质,利用圆周角定理找到两个相似三角形是解题关键.二、填空题(每小题3分,共24分)11、(3,﹣2)【分析】根据抛物线y=a(x﹣h)2+k的顶点坐标是(h,k)直接写出即可.【题目详解】解:抛物线y=(x﹣3)2﹣2的顶点坐标是(3,﹣2).故答案为(3,﹣2).【题目点拨】此题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是.12、55°【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°-35°=55°.【题目详解】如图,∵CD为斜边AB的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°-35°=55°故填:55°.【题目点拨】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.13、【解题分析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.14、.【分析】方程去分母转化为整式方程,求出整式方程的解得到的值,经检验得到分式方程的解.【题目详解】去分母得:,解得:,经检验是的根,所以,原方程的解是:.故答案是为:【题目点拨】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15、0.23【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=进价+利润”列方程解答.【题目详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,
所以苹果的损坏概率为0.2.
根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克.
设每千克苹果的销售价为x元,则应有9000x=2.2×20000+23000,
解得x=3.
答:出售苹果时每千克大约定价为3元可获利润23000元.
故答案为:0.2,3.【题目点拨】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.16、﹣1【分析】根据反比例函数图象上点的坐标特征得到k=xy,由此求得ab的值,然后将其代入所求的代数式进行求值即可.【题目详解】解:∵点A(a,b)在双曲线y=上,∴3=ab,∴ab﹣4=3﹣4=﹣1.故答案为:﹣1.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17、4(1+x)2=5.1【解题分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x,根据“由2010年的年收入4万元增加到2012年年收入5.1万元”,即可得出方程.【题目详解】设每年的年增长率为x,根据题意得:4(1+x)2=5.1.故答案为4(1+x)2=5.1.【题目点拨】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).18、.【解题分析】试题分析:根据三角形的内角和是180°和扇形的面积公式进行计算.试题解析:∵∠A+∠B+∠C=180°,∴阴影部分的面积=.考点:扇形面积的计算.三、解答题(共66分)19、(1)或;(2)①证明见解析,②.【分析】(1)根据三角形的等距点的定义得出OB=OE或OA=OF,利用相似三角形,表达出对应边,列出方程求解即可;(2)①由△CPD为直角三角形,作出外接圆,通过平行线分线段成比例得出DP∥OB,进而证明△CBO≌△PBO,最后推出OP为点O到AB的距离,从而证明点O是△ABC的等距点;(2)求相当于求,由①可得△APO为直角三角,通过勾股定理计算出BC的长度,从而求出.【题目详解】解:(1)如图所示,作OF⊥BC于点F,作OE⊥AC于点E,则△OBF∽△ABC,∴∵,,由勾股定理可得AB=5,设OB=x,则∴,∵点是的等距点,若OB=OE,∴解得:若OA=OF,OA=5-x∴,解得故OB的值为或(2)①证明:∵△CDP是直角三角形,所以取CD中点O,作出△CDP的外接圆,连接OP,OB设圆O的半径为r,则DC=2r,∵D是AC中点,∴OA=3r∴,又∵PA=2PB,∴AB=3PB∴∴∴∠ODP=∠COB,∠OPD=∠POB又∵∠ODP=∠OPD,∴∠COB=∠POB,在△CBO与△PBO中,,∴△CBO≌△PBO(SAS)∴∠OCB=∠OPB=90°,∴OP⊥AB,即OP为点O到AB的距离,又∵OP=OC,∴△CPD的外接圆圆心O是△ABC的等距点②由①可知,△OPA为直角三角形,且∠PDC=∠BOC,OC=OP=r∵在Rt△OPA中,OA=3r,∴,∴∴在Rt△ABC中,AC=4r,,∴,∴【题目点拨】本题考查了几何中的新定义问题,涉及了相似三角形的判定和性质,直角三角形的性质,圆的性质及三角函数的内容,范围较大,综合性较强,解题的关键是明确题中的新定义,并灵活根据几何知识作出解答.20、(1)见详解;(2)①见详解;②120°【分析】教材呈现:证明△ADE∽△ABC即可解决问题.结论应用:(1)首先证明△ADE是等边三角形,推出AD=AE,BD=CE,再利用三角形的中位线定理即可证明.(2)利用三角形的中位线定理以及平行线的性质解决问题即可.【题目详解】教材呈现:证明:∵点D,E分别是AB,AC的中点,∴,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,,∴DE∥BC,DE=BC.结论应用:(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵DE∥AB,∴∠ABC=∠ADE=60°,∠ACB=∠AED=60°,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=AE,∴BD=CE,∵EM=MD,EN=NB,∴MN=BD,∵BN=NE,BP=PC,∴PN=EC,∴NM=NP.(2)∵EM=MD,EN=NB,∴MN∥BD,∵BN=NE,BP=PC,∴PN∥EC,∴∠MNE∠ABE,∠PNE=∠AEB,∵∠AEB=∠EBC+∠C,∠ABC=∠C=60°,∴∠MNP=∠ABE+∠EBC+∠C=∠ABC+∠C=120°.【题目点拨】本题考查了三角形中位线定理,,平行线的性质、相似三角形的判定与性质,综合性较强,难度适中.熟练掌握各定理是解题的关键.21、(1)抛物线的对称轴x=1,A(6,0);(1)△ACD的面积为11;(3)点P的坐标为(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x,即可求出点A、B的坐标,令x=0,求出y即可求出点C的坐标,再根据对称轴公式即可求出抛物线的对称轴;(1)先将二次函数的一般式化成顶点式,即可求出点D的坐标,利用待定系数法求出直线AC的解析式,从而求出点F的坐标,根据“铅垂高,水平宽”求面积即可;(3)根据等腰三角形的底分类讨论,①过点O作OM⊥AC交DE于点P,交AC于点M,根据等腰三角形的性质和垂直平分线的性质即可得出此时AC为等腰三角形ACP的底边,且△OEP为等腰直角三角形,从而求出点P坐标;②过点C作CP⊥DE于点P,求出PD,可得此时△PCD是以CD为底边的等腰直角三角形,从而求出点P坐标;③作AD的垂直平分线交DE于点P,根据垂直平分线的性质可得PD=PA,设PD=x,根据勾股定理列出方程即可求出x,从而求出点P的坐标.【题目详解】(1)对于抛物线y=﹣x1+1x+6令y=0,得到﹣x1+1x+6=0,解得x=﹣1或6,∴B(﹣1,0),A(6,0),令x=0,得到y=6,∴C(0,6),∴抛物线的对称轴x=﹣=1,A(6,0).(1)∵y=﹣x1+1x+6=,∴抛物线的顶点坐标D(1,8),设直线AC的解析式为y=kx+b,将A(6,0)和C(0,6)代入解析式,得解得:,∴直线AC的解析式为y=﹣x+6,将x=1代入y=﹣x+6中,解得y=4∴F(1,4),∴DF=4,∴==11;(3)①如图1,过点O作OM⊥AC交DE于点P,交AC于点M,∵A(6,0),C(0,6),∴OA=OC=6,∴CM=AM,∠MOA=∠COA=45°∴CP=AP,△OEP为等腰直角三角形,∴此时AC为等腰三角形ACP的底边,OE=PE=1.∴P(1,1),②如图1,过点C作CP⊥DE于点P,∵OC=6,DE=8,∴PD=DE﹣PE=1,∴PD=PC,此时△PCD是以CD为底边的等腰直角三角形,∴P(1,6),③如图3,作AD的垂直平分线交DE于点P,则PD=PA,设PD=x,则PE=8﹣x,在Rt△PAE中,PE1+AE1=PA1,∴(8﹣x)1+41=x1,解得x=5,∴PE=8﹣5=3,∴P(1,3),综上所述:点P的坐标为(1,1)或(1,6)或(1,3).【题目点拨】此题考查的是二次函数与图形的综合大题,掌握将二次函数的一般式化为顶点式、二次函数图象与坐标轴的交点坐标的求法、利用“铅垂高,水平宽”求三角形的面积和分类讨论的数学思想是解决此题的关键.22、(1)A1(﹣3,3),B1(﹣2,1);(2).【解题分析】试题分析:(1)根据网格结构找出点绕点逆时针旋转90°后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;
(2)利用勾股定理列式求出的长,再利用弧长公式列式计算即可得解;试题解析:(1)如图,(2)由可得:23、AB=30(mm)【解题分析】解:如图所示,连接AB,与CO的延长线交于点E.∵夹子是轴对称图形,对称轴是CE,且A,B为一组对称点,∴CE⊥AB,AE=EB.在Rt△AEC和Rt△ODC中,∵∠ACE=∠OCD,∴Rt△AEC∽Rt△ODC,∴.∵(mm),∴(mm).∴AB=2AE=15×2=30(mm).24、表见解析,【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【题目详解】解:列表如下:﹣3﹣124﹣3﹣﹣﹣(﹣1,﹣3)(2,﹣3)(4,﹣3)﹣1(﹣3,﹣1)﹣﹣﹣(2,﹣1)(4,﹣1)2(﹣3,2)(﹣1,2)﹣﹣﹣(4,2)4(﹣3,4)(﹣1,4)(2,4)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有4种,∴该点在第二象限的概率为=.【题目点拨】本题主要考查了列表法或树状图法求概率,熟练的用列表法或树状图法列出所有的情况数是解题的关键.25、感知:(1)详见解析;(1)m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年斜叶开启涡轮式搅拌器项目投资价值分析报告
- 房地产开发经济责任审计工作方案
- 2024年丙烯酸高温烤漆项目可行性研究报告
- 智能制造业供货链管理方案
- 2024年中国装饰滑轮市场调查研究报告
- 中等职业学校-校园文化建设方案
- 一、墙面钢筋网砂浆抹灰加固方案
- 2024年男士护理项目综合评估报告
- 2024年燃气灶项目综合评估报告
- 2024年宠物领养合同新规定
- 房地产组织架构图
- 盐酸安全知识培训
- 万盛关于成立医疗设备公司组建方案(参考模板)
- 停线管理规定
- 《我和小姐姐克拉拉》阅读题及答案(一)
- 大型展会对城市会展业发展影响文献综述会展专业
- 乡镇结核病防治工作职责
- 机组启动试运行工作报告
- 礼仪队工作计划三篇
- 互补输出级介绍
- 中波广播发送系统概述
评论
0/150
提交评论