2024届湖北省黄冈浠水县联考数学九上期末复习检测模拟试题含解析_第1页
2024届湖北省黄冈浠水县联考数学九上期末复习检测模拟试题含解析_第2页
2024届湖北省黄冈浠水县联考数学九上期末复习检测模拟试题含解析_第3页
2024届湖北省黄冈浠水县联考数学九上期末复习检测模拟试题含解析_第4页
2024届湖北省黄冈浠水县联考数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省黄冈浠水县联考数学九上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,四边形ABCD内接于⊙O,连接AC,BD,点E在AD的延长线上,()A.若DC平分∠BDE,则AB=BCB.若AC平分∠BCD,则C.若AC⊥BD,BD为直径,则D.若AC⊥BD,AC为直径,则2.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米 B.2分米 C.3分米 D.3分米3.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D4.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某新能源汽车4s店的汽车销量自2018年起逐月增加.据统计,该店第一季度的汽车销量就达244辆,其中1月份销售汽车64辆.若该店1月份到3月份新能源汽车销售量的月平均增长率为x,则下列方程正确的是()A.64(1+x)2=244B.64(1+2x)=244C.64+64(1+x)+64(1+x)2=244D.64+64(1+x)+64(1+2x)=2445.如图,在△中,,,垂足为,若,,则的值为()A. B.C. D.6.二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,则t的值为()A.0 B. C.1 D.27.如图,在中,,若,,则与的比是()A. B. C. D.8.若点,在抛物线上,则下列结论正确的是()A. B. C. D.9.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.1210.方程是关于x的一元二次方程,则m的值是()A. B.C. D.不存在11.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)708090100110学生人数(人)472072A.众数是90分钟 B.估计全校每天做书面家庭作业的平均时间是89分钟C.中位数是90分钟 D.估计全校每天做书面家庭作业的时间超过90分钟的有9人12.下列选项中,y是x的反比例函数的是()A. B. C. D.二、填空题(每题4分,共24分)13.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.14.如图,,分别是边,上的点,,若,,,则______.15.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.16.若关于的一元二次方程有实数根,则的取值范围是__________.17.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.18.如图,在△ABC中,∠C=90°,AC=3,若cosA=,则BC的长为________.三、解答题(共78分)19.(8分)有5张不透明的卡片,除正面上的图案不同外,其它均相同.将这5张卡片背面向上洗匀后放在桌面上.若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.20.(8分)某市有A、B、C三个公园,甲、乙两位同学随机选择其中一个公园游玩.(1)甲去A公园游玩的概率是;(2)求甲、乙恰好在同一个公园游玩的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点顺时针旋90°后得到的△A2B2C2;(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为.22.(10分)非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于2019年9月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x(,且x为整数)之间的函数关系如图所示.(1)请直接写出当(x为整数)和(x为整数)时,y与x的函数关系式;(2)若该饲养场生猪利润P(万元/吨)与月份x(,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?23.(10分)如图,在△ABC中,AB=AC=10,∠B=30°,O是线段AB上的一个动点,以O为圆心,OB为半径作⊙O交BC于点D,过点D作直线AC的垂线,垂足为E.(1)求证:DE是⊙O的切线;(2)设OB=x,求∠ODE的内部与△ABC重合部分的面积y的最大值.24.(10分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.25.(12分)如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP.(1)求证:△BOQ≌△POQ;(2)若直径AB的长为1.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.26.如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.(1)求抛物线解析式及B点坐标;(2)x2+bx+c≤﹣5x+5的解集是;(3)若点M为抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】利用圆的相关性质,依次分析各选项作答.【题目详解】解:A.若平分,则,∴A错B.若平分,则,则,∴B错C.若,为直径,则∴C错D.若,AC为直径,如图:连接BO并延长交于点E,连接DE,∵,∴.∵BE为直径,∴,,∴.∴选D.【题目点拨】本题考查圆的相关性质,另外需结合勾股定理,三角函数相关知识解题属于综合题.2、B【分析】连接OC,作OE⊥CD,根据垂径定理和勾股定理求解即可.【题目详解】解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故选:B.【题目点拨】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.3、D【分析】利用对应点的连线都经过同一点进行判断.【题目详解】如图,位似中心为点D.故选D.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.4、C【分析】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,等量关系为:1月份的销售量+1月份的销售量×(1+增长率)+1月份的销售量×(1+增长率)2=第一季度的销售量,把相关数值代入求解即可.【题目详解】设该店1月份到3月份新能源汽车销售量的月平均增长率为x,根据题意列方程:64+64(1+x)+64(1+x)2=1.故选:C.【题目点拨】此题主要考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.5、D【分析】在△中,根据勾股定理可得,而∠B=∠ACD,即可把求转化为求.【题目详解】在△中,根据勾股定理可得:∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴=.故选D.【题目点拨】本题考查了了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6、C【解题分析】根据二次函数的对称轴方程计算.【题目详解】解:∵二次函数y=x2+(t﹣1)x+2t﹣1的对称轴是y轴,∴﹣=0,解得,t=1,故选:C.【题目点拨】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.7、D【分析】根据平行即可证出△ADE∽△ABC,然后根据相似三角形的面积比等于相似比的平方,即可得出结论.【题目详解】解:∵∴△ADE∽△ABC∴故选D.【题目点拨】此题考查的是相似三角形的判定及性质,掌握利用平行判定两个三角形相似和相似三角形的面积比等于相似比的平方是解决此题的关键.8、A【分析】将x=0和x=1代入表达式分别求y1,y2,根据计算结果作比较.【题目详解】当x=0时,y1=-1+3=2,当x=1时,y2=-4+3=-1,∴.故选:A.【题目点拨】本题考查二次函数图象性质,对图象的理解是解答此题的关键.9、B【解题分析】试题分析:∵DE:EA=3:4,∴DE:DA=3:3,∵EF∥AB,∴,∵EF=3,∴,解得:AB=3,∵四边形ABCD是平行四边形,∴CD=AB=3.故选B.考点:3.相似三角形的判定与性质;3.平行四边形的性质.10、B【分析】根据一元二次方程的定义进行求解即可.【题目详解】由题知:,解得,∴故选:B.【题目点拨】本题考查了利用一元二次方程的定义求参数的值,熟知一元二次方程的定义是解题的关键.11、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【题目详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即=90,正确;C、平均时间为:×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【题目点拨】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.12、C【解题分析】根据反比例函数的定义“一般的,如果两个变量x,y之间的关系可以表示成,其中为常数,,我们就叫y是x的反比例函数”判定即可.【题目详解】A、x的指数是,不符定义B、x的指数是1,y与x是成正比例的,不符定义C、可改写成,符合定义D、当是,函数为,是常数函数,不符定义故选:C.【题目点拨】本题考查了反比例函数的定义,熟记定义是解题关键.二、填空题(每题4分,共24分)13、-2【解题分析】试题解析:由韦达定理可得,故答案为14、1【分析】证明△ADE∽△ACB,根据相似三角形的性质列出比例式,计算即可.【题目详解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案为:1.【题目点拨】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.15、6000【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【题目详解】解:由题意可得,甲的速度为:4000÷(12-2-2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),故答案为6000.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.16、【分析】一元二次方程有实数根,即【题目详解】解:一元二次方程有实数根解得【题目点拨】本题考查与系数的关系.17、1【解题分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【题目详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【题目点拨】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.18、1【分析】由题意先根据∠C=90°,AC=3,cos∠A=,得到AB的长,再根据勾股定理,即可得到BC的长.【题目详解】解:∵△ABC中,∠C=90°,AC=3,cos∠A=,∴,∴AB=5,∴BC==1.故此空填1.【题目点拨】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA,以此并结合勾股定理分析求解.三、解答题(共78分)19、【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【题目详解】解:在这些图形中,B,C,E是轴对称图形,画树状图如下:由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,两次所抽取的卡片恰好都是轴对称图形的概率为.【题目点拨】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.20、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)利用列举方法找出所有的可能情况,再找两位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【题目详解】解:(1)甲去A公园游玩的概率为;故答案为:.(2)列树状图如下:共有9种等可能结果,其中甲、乙恰好在同一个公园游玩的有3种,∴其概率为.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件的结果数目,然后利用概率公式计算事件的概率.21、(1)答案见解析;(2)答案见解析;(3)(1,0)【分析】(1)首先将A、B、C三点分别向右平移3个单位,再向上平移1个单位,得A1、B1、C1三点,顺次连接这些点,即可得到所求作的三角形;(2)找出点B、C绕点A顺时针旋转90°的位置,然后顺次连接即可;(3)△A′B′C′与△ABC是中心对称图形,连接对应点即可得出答案.【题目详解】解:(1)将A,B,C,分别右平移3个单位长度,再向上平移1个单位长度,可得出平移后的△A1B1C1;(2)将△A1B1C1三顶点A1,B1,C1,绕原点旋转90°,即可得出△A2B2C2;(3)∵△A′B′C′与△ABC是中心对称图形,连接AA′,BB′CC′可得出交点:(1,0),故答案为(1,0).【题目点拨】本题考查作图-旋转变换;作图-平移变换,掌握图形变化特点,数形结合思想解题是关键.22、(1)(,x为整数),(,x为整数);(2)该饲养场一月份的利润最大,最大利润是203万元【分析】(1)由图可知当时,,当时,利用待定系数法可求出解析式;(2)设生猪饲养场月利润为W,分段讨论函数的最值,进行比较即可得出最大利润及月份.【题目详解】解:(1)当时,;当时,设,将(4,140),(12,220)代入得,解得∴∴y与x的函数关系式为:(,x为整数),(,x为整数)(2)设生猪饲养场月利润为W,当(x为整数)时,,因为,W随x的增大而减小,所以当x取最小值1时,万元当(x为整数)时,,因为,所以当时,万元;综上所述,该饲养场一月份的利润最大,最大利润是203万元【题目点拨】本题考查了待定系数法求一次函数解析式,以及一次函数和二次函数的最值问题,熟练掌握待定系数法和二次函数的最值求法是解题的关键.23、(1)证明见解析;(2)【分析】(1)由等腰三角形的性质可得∠C=∠B,∠ODB=∠C,从而∠ODB=∠C,根据同位角相等两直线平行可证OD∥AC,进而可证明结论;(2)①当点E在CA的延长线上时,设DE与AB交于点F,围成的图形为△ODF;②当点E在线段AC上时,围成的图形为梯形AODE.根据三角形和梯形的面积公式列出函数关系式,利用二次函数的性质求解.【题目详解】证明:(1)连接OD,∵AB=AC,∴∠C=∠B.∵OB=OD,∴∠ODB=∠B∴∠ODB=∠C∴OD∥AC.∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.(2)①当点E在CA的延长线上时,设DE与AB交于点F,围成的图形为△ODF.∵OD=OB=x,∠B=30°,∴∠FOD=60°,∵∠ODE=90°,∴DF=x,∴S△ODF=x·x=,(0<x≤)当x=时,S△ODF最大,最大值为;②当点E在线段AC上时,围成的图形为梯形AODE.∵AB=AC=10,∠B=30°,∴BC=10,作OH⊥BC,∵OD=OB=x,∠B=30°,∴BD=2BH=x,∴CD=10-x,∵∠C=30°,∠DEC=90°,∴DE=(10-x),CE=(10-x)=15-x,∴AE=x-5,∴S梯形AODE=(x-5+x)·(10-x)=(-+12x-20)(<x<10)当x=6时,S梯形AODE最大,最大值为10;综上所述,当x=6时,重合部分的面积最大,最大值为10.点睛:本题考查了等腰三角形的性质,平行线的判定与性质,切线的判定,解直角三角形,三角形和梯形的面积公式,二次函数的性质,知识点比较多,难度比较大.熟练掌握切线的判定方法及二次函数的性质是解答本题的关键.24、(1),顶点坐标为;(2)8;(3)①;②.【分析】(1)将点C代入表达式即可求出解析式,将表达式转换为顶点式即可写出顶点坐标;(2)根据题目分析可知,当点P位于抛物线顶点时,△ABP面积最大,根据解析式求出A、B坐标,从而得到AB长,再利用三角形面积公式计算面积即可;(3)①分三种情况:0<m≤1、1<m≤2以及m>2时,分别进行计算即可;②将h=9代入①中的表达式分别计算判断即可.【题目详解】解:(1)将点代入,得,解得,∴,∵,∴抛物线的顶点坐标为;(2)令,解得或,∴,,∴,当点与抛物线顶点重合时,△ABP的面积最大,此时;(3)①∵点C(0,-3)关于对称轴x=1对称的点的坐标为(2,-3),P(m,),∴当时,,当时,,当时,,综上所述,;②当h=9时,若,此时方程无解,若,解得m=4或m=-2(不合题意,舍去),∴P(4,5).【题目点拨】本题为二次函数综合题,需熟练掌握二次函数表达式求法及二次函数的性质,对于动点问题正确分析出所存在的所有情况是解题关键.25、(1)见解析;(2)①6,②6.【分析】(1)根据切线的性质得∠OBQ=90°,再根据平行线的性质得∠APO=∠POQ,∠OAP=∠BOQ,加上∠OPA=∠OAP,则∠POQ=∠BOQ,于是根据“SAS”可判断△BOQ≌△POQ;(2)①利用△BOQ≌△POQ得到∠OPQ=∠OBQ=90°,由于OB=OP,所以当∠BOP=90°,四边形OPQB为正方形,此时点C、点E与点O重合,于是PE=PO=6;②根据菱形的判定,当OC=AC,PC=EC,四边形AEOP为菱形,则OC=OA=3,然后利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论