上海市张江集团学校2024届九年级数学第一学期期末统考试题含解析_第1页
上海市张江集团学校2024届九年级数学第一学期期末统考试题含解析_第2页
上海市张江集团学校2024届九年级数学第一学期期末统考试题含解析_第3页
上海市张江集团学校2024届九年级数学第一学期期末统考试题含解析_第4页
上海市张江集团学校2024届九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市张江集团学校2024届九年级数学第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知线段c是线段a和b的比例中项,若a=1,b=2,则c=()A.1 B. C. D.2.已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是A. B. C. D.3.己知⊙的半径是一元二次方程的一个根,圆心到直线的距离.则直线与⊙的位置关系是A.相离 B.相切 C.相交 D.无法判断4.下列语句中正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.经过圆心的每一条直线都是圆的对称轴5.用配方法解方程,经过配方,得到()A. B. C. D.6.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A. B.C. D.7.在反比例函中,k的值是()A.2 B.-2 C.1 D.8.下列四幅图案,在设计中用到了中心对称的图形是()A. B. C. D.9.抛物线的顶点坐标是()A.(3,5) B.(-3,-5) C.(-3,5) D.(3,-5)10.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.11.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定12.如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B. C. D.二、填空题(每题4分,共24分)13.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.14.已知△ABC∽△A'B'C',S△ABC:S△A'B'C'=1:4,若AB=2,则A'B'的长为_____.15.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.16.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.17.点A(﹣2,3)关于原点对称的点的坐标是_____.18.已知:a,b在数轴上的位置如图所示,化简代数式:=_____.三、解答题(共78分)19.(8分)如图,是的直径,弦于点,点在上,恰好经过圆心,连接.(1)若,,求的直径;(2)若,求的度数.20.(8分)先化简,再从0、2、4、﹣1中选一个你喜欢的数作为x的值代入求值.21.(8分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.22.(10分)化简求值:,其中.23.(10分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.24.(10分)(阅读)辅助线是几何解题中沟通条件与结论的桥梁.在众多类型的辅助线中,辅助圆作为一条曲线型辅助线,显得独特而隐蔽.性质:如图①,若,则点在经过,,三点的圆上.(问题解决)运用上述材料中的信息解决以下问题:(1)如图②,已知.求证:.(2)如图③,点,位于直线两侧.用尺规在直线上作出点,使得.(要求:要有画图痕迹,不用写画法)(3)如图④,在四边形中,,,点在的延长线上,连接,.求证:是外接圆的切线.25.(12分)如图,平行四边形中,,是上一点,,连接,点是的中点,且满足是等腰直角三角形,连接.(1)若,求的长;(2)求证:.26.计算:

参考答案一、选择题(每题4分,共48分)1、B【分析】根据线段比例中项的概念,可得a:c=c:b,可得c2=ab=2,故c的值可求,注意线段不能为负.【题目详解】解:∵线段c是a、b的比例中项,∴c2=ab=2,

解得c=±,

又∵线段是正数,∴c=.

故选:B.【题目点拨】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.2、D【题目详解】根据题意有:xy=24;且根据x,y实际意义x、y应大于0,其图象在第一象限.故选D.3、A【分析】在判断直线与圆的位置关系时,通常要得到圆心到直线的距离,然后再利用d与r的大小关系进行判断;在直线与圆的问题中,充分利用构造的直角三角形来解决问题,直线与圆的位置关系:①当d>r时,直线与圆相离;②当d=r时,直线与圆相切;③当d<r时,直线与圆相交.【题目详解】∵的解为x=4或x=-1,∴r=4,∵4<6,即r<d,∴直线和⊙O的位置关系是相离.故选A.【题目点拨】本题主要考查了直线与圆的位置关系,一元二次方程的定义及一般形式,掌握直线与圆的位置关系,一元二次方程的定义及一般形式是解题的关键.4、D【解题分析】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A、在同圆或等圆中,长度相等的两条弧是等弧;B、平分弦(不是直径)的直径垂直于弦;C、在同圆或等圆中,相等的圆心角所对的弧相等;D、经过圆心的每一条直线都是圆的对称轴;故选D.点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.5、D【分析】通过配方法的步骤计算即可;【题目详解】,,,,故答案选D.【题目点拨】本题主要考查了一元二次方程的配方法应用,准确计算是解题的关键.6、A【分析】根据阴影部分面积的两种表示方法,即可解答.【题目详解】图1中阴影部分的面积为:,图2中的面积为:,则故选:A.【题目点拨】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.7、B【分析】根据反比例函数的定义,直接可得出k的值.【题目详解】∵反比例一般式为:∴k=-1故选:B.【题目点拨】本题考查反比例函数的一般式,注意本题的比例系数k是-1而非1.8、D【解题分析】由题意根据中心对称图形的性质即图形旋转180°与原图形能够完全重合的图形是中心对称图形,依次对选项进行判断即可.【题目详解】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,能与原图形能够完全重合是中心对称图形;故此选项正确;故选:D.【题目点拨】本题主要考查中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.9、C【解题分析】由题意根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),求出顶点坐标即可.【题目详解】解:∵;∴顶点坐标为:(-3,5).故选:C.【题目点拨】本题考查二次函数的性质和二次函数的顶点式.熟悉二次函数的顶点式方程y=a(x-h)2+k中的h、k所表示的意义是解决问题的关键.10、C【分析】由题意首先根据相似三角形求得∠B的度数,然后根据特殊角的三角函数值确定正确的选项即可.【题目详解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故选:C.【题目点拨】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等.11、A【分析】此题考查一元二次方程解的情况的判断.利用判别式来判断,当时,有两个不等的实根;当时,有两个相等的实根;当时,无实根;【题目详解】题中,所以次方程有两个不相等的实数根,故选A;12、C【分析】根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.【题目详解】∵抛物线与轴交于、两点∴A(-4,0),B(4,0),即OA=4.在直角三角形COB中BC=∵Q是AP上的中点,O是AB的中点∴OQ为△ABP中位线,即OQ=BP又∵P在圆C上,且半径为2,∴当B、C、P共线时BP最大,即OQ最大此时BP=BC+CP=7OQ=BP=.【题目点拨】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.二、填空题(每题4分,共24分)13、【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【题目详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=.故答案为:.【题目点拨】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.14、1【分析】由相似三角形的面积比得到相似比,再根据AB即可求得A'B'的长.【题目详解】解:∵△ABC∽△A'B'C',且S△ABC:S△A'B''C'=1:1,∴AB:A′B′=1:2,∵AB=2,∴A′B′=1.故答案为1.【题目点拨】此题考查相似三角形的性质,相似三角形的面积的比等于相似比的平方.15、6.【解题分析】分析:设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解:设扇形的半径为r,根据题意得:60πr解得:r=6故答案为6.点睛:此题考查弧长公式,关键是根据弧长公式解答.16、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【题目详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【题目点拨】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。17、(2,﹣3)【分析】根据两个点关于原点对称,它们的坐标符号相反求解即可.【题目详解】点P(-2,3)关于原点对称的点的坐标为(2,-3),故本题正确答案为(2,-3).【题目点拨】本题考查了关于原点对称的性质,掌握两个点关于原点对称,它们的坐标符号相反是解决本题的关键.18、1.【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【题目详解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案为:1.【题目点拨】此题主要考查了二次根式的化简和性质,正确把握绝对值的性质是解答此题的关键.三、解答题(共78分)19、(1)1;(2)【分析】(1)由CD=16,BE=4,根据垂径定理得出CE=DE=8,设⊙O的半径为r,则,根据勾股定理即可求得结果;

(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;(2)由OM=OB得到∠B=∠M,根据三角形外角性质得∠DOB=∠B+∠M=2∠B,则2∠B+∠D=90°,加上∠B=∠D,所以2∠D+∠D=90°,然后解方程即可得∠D的度数;【题目详解】解:(1)∵AB⊥CD,CD=16,

∴CE=DE=8,

设,

又∵BE=4,

∴∴,

解得:,

∴⊙O的直径是1.(2)∵OM=OB,

∴∠B=∠M,

∴∠DOB=∠B+∠M=2∠B,

∵∠DOB+∠D=90°,

∴2∠B+∠D=90°,

∵,∴∠B=∠D,

∴2∠D+∠D=90°,

∴∠D=30°;【题目点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.20、原式=x,当x=﹣1时,原式=﹣1【分析】先对分子分母分别进行因式分解,能约分的先约分,再算括号,化除法为乘法,再进行约分;再从0、2、4、﹣1中选使得公分母不为0的数值代入最简分式中即可.【题目详解】解:原式∵x﹣2≠0,x﹣4≠0,x≠0∴x≠2且x≠4且x≠0∴当x=﹣1时,原式=﹣1.【题目点拨】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21、(1);(2)【分析】(1)根据概率公式求解可得;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:所有可能出现的情况有6种,其中乙丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.【题目点拨】考核知识点:求概率.运用列举法求概率是关键.22、,1【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将的值代入计算即可求出值.【题目详解】;当时,原式.【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.23、(1)y;(2)yx+1.【解题分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【题目详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y的图象经过点B(a,b),∴b,∴AD=3,∴S△ABCBC•ADa(3)=6,解得a=6,∴b1,∴B(6,1),设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得:,所以直线AB的解析式为yx+1.【题目点拨】本题考查了利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论