版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省桐城实验中学数学九年级第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形 B.中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形2.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A. B. C. D.3.九(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当林校长走到教室门口时,听到里面有人在发言,那么发言人是家长的概率为()A. B. C. D.4.下列方程没有实数根的是()A.x2﹣x﹣1=0 B.x2﹣6x+5=0 C.x2﹣2x+3=0 D.x2+x+1=05.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15π B.20π C.24π D.30π6.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.7.的半径为5,圆心O到直线l的距离为3,则直线l与的位置关系是A.相交 B.相切 C.相离 D.无法确定8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:19.若点,,在反比例函数的图像上,则的大小关系是()A. B. C. D.10.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)11.如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是()图(1)图(2)A. B.当是等边三角形时,秒C.当时,秒 D.当的面积为时,的值是或秒12.方程的解是().A.x1=x2=0 B.x1=x2=1 C.x1=0,x2=1 D.x1=0,x2=-1二、填空题(每题4分,共24分)13.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=,∠ADC=60°,则劣弧的长为_____.14.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.15.若点与关于原点对称,则的值是___________.16.若二次函数的图象与x轴只有一个公共点,则实数n=______.17.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.18.如图,为半圆的直径,点、、是半圆弧上的三个点,且,,若,,连接交于点,则的长是______.三、解答题(共78分)19.(8分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价(元/件)的关系如下表:15202530550500450400设这种产品在这段时间内的销售利润为(元),解答下列问题:(1)如是的一次函数,求与的函数关系式;(2)求销售利润与销售单价之间的函数关系式;(3)求当为何值时,的值最大?最大是多少?20.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.21.(8分)如图,已知均在上,请用无刻度的直尺作图.如图1,若点是的中点,试画出的平分线;如图2,若.试画出的平分线.22.(10分)已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.23.(10分)体育文化公司为某学校捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.
(1)下列事件是不可能事件的是.A.选购乙品牌的D型号B.既选购甲品牌也选购乙品牌C.选购甲品牌的A型号和乙品牌的D型号D.只选购甲品牌的A型号(2)写出所有的选购方案(用列表法或树状图);(3)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?24.(10分)2018年高一新生开始,某省全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.25.(12分)如图,在矩形的边上取一点,连接并延长和的延长线交于点,过点作的垂线与的延长线交于点,与交于点,连接.(1)当且时,求的长;(2)求证:;(3)连接,求证:.26.如图是四个全等的小矩形组成的图形,这些矩形的顶点称为格点.△ABC是格点三角形(顶点是格点的三角形)(1)若每个小矩形的较短边长为1,则BC=;(2)①在图1、图2中分别画一个格点三角形(顶点是格点的三角形),使它们都与△ABC相似(但不全等),且图1,2中所画三角形也不全等).②在图3中只用直尺(没有刻度)画出△ABC的重心M.(保留痕迹,点M用黑点表示,并注上字母M)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称和中心对称图形的概念判断即可.【题目详解】“赵爽弦图”是中心对称图形,但不是轴对称图形,故选:B.【题目点拨】本题主要考查轴对称和中心对称,会判断轴对称图形和中心对称图形是解题的关键.2、A【解题分析】由勾股定理,得AC=,由正切函数的定义,得tanA=,故选A.3、B【解题分析】根据概率=频数除以总数即可解题.【题目详解】解:由题可知:发言人是家长的概率==,故选B.【题目点拨】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.4、D【解题分析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△=-4ac的值的符号即可.【题目详解】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等的实数根,故本选项错误;B、∵△=b2﹣4ac=36﹣20=16>0,∴方程有两个不相等的实数根,故本选项错误;C、∵△=b2﹣4ac=12﹣12=0,∴方程有两个相等的实数根,故本选项错误;D、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,故本选项正确.故选:D.【题目点拨】本题考查根的判别式.一元二次方程的根与△=-4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5、A【解题分析】试题分析:∵圆锥的主视图是腰长为5,底边长为6的等腰三角形,∴这个圆锥的底面圆的半径为3,母线长为5.∴这个圆锥的侧面积=.故选A.考点:1.简单几何体的三视图;2.圆锥的计算.6、C【解题分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【题目详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【题目点拨】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.7、A【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【题目详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【题目点拨】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.8、B【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【题目详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.9、C【解题分析】根据点A、B、C分别在反比例函数上,可解得、、的值,然后通过比较大小即可解答.【题目详解】解:将A、B、C的横坐标代入反比函数上,得:y1=-6,y2=3,y3=2,所以,;故选C.【题目点拨】本题考查了反比例函数的计算,熟练掌握是解题的关键.10、C【分析】先求出AB=1,再利用正方形的性质确定D(-3,10),由于2019=4×504+3,所以旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,由此求出点D坐标即可.【题目详解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四边形ABCD为正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一个循环,第2019次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,每次旋转,刚好旋转到如图O的位置.∴点D的坐标为(﹣10,﹣3).故选:C.【题目点拨】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,10°,90°,180°.11、D【分析】先根据图象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D、分点P在BE上和点P在CD上两种情况计算即可.【题目详解】由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A错误,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴点P在ED时,有可能△PBQ是等边三角形,∵BE=BC,∴点P到点E时,点Q到点C,∴点P在线段AD中点时,有可能△PBQ是等边三角形,∵AE>DE,∴点P不可能到AD的中点,∴△PBQ不可能是等边三角形,故B错误,C、∵△ABE∽△QBP,∴点E只有在CD上,且满足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4−)=.故C错误,D、①如图(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=−(舍)或t=,②当点P在CD上时,S△BPQ=×BC×PC=×5×(5+2+4−t)=×(11−t)=4,∴t=,∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,故选:D.【题目点拨】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型..12、D【分析】利用提公因式法解方程,即可得到答案.【题目详解】解:∵,∴,∴或;故选择:D.【题目点拨】本题考查了解一元二次方程,熟练掌握提公因式法解方程是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接DF,OD,根据圆周角定理得到∠CDF=90°,根据三角形的内角和得到∠COD=120°,根据三角函数的定义得到CF==4,根据弧长公式即可得到结论.【题目详解】解:如图,连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半径=2,∴劣弧的长==π,故答案为π.【题目点拨】本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.14、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【题目详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【题目点拨】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.15、1【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反.【题目详解】∵点与关于原点对称∴故填:1.【题目点拨】本题主要考查了关于原点对称的点的坐标特点,熟练掌握点的变化规律是关键.16、1.【解题分析】】解:y=x2﹣1x+n中,a=1,b=﹣1,c=n,b2﹣1ac=16﹣1n=0,解得n=1.故答案为1.17、120°【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【题目详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【题目点拨】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.18、【分析】连接OC,根据菱形的判定,可得四边形AODC为菱形,从而得出AC=OD,根据圆的性质可得OE=OC=AC=OA=,从而得出△AOC为等边三角形,然后根据同弧所对的圆周角是圆心角的一半,可求得∠EOC,从而得出OE平分∠AOC,根据三线合一和锐角三角函数即可求出OF,从而求出EF.【题目详解】解:连接OC∵,,OA=OD∴四边形AODC为菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC为等边三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案为:.【题目点拨】此题考查的是菱形的判定及性质、圆的基本性质、等边三角形的判定及性质和解直角三角形,掌握菱形的判定及性质、同弧所对的圆周角是圆心角的一半、等边三角形的判定及性质和用锐角三角函数解直角三角形是解决此题的关键.三、解答题(共78分)19、(1);(2);(3)当时,的值最大,最大值为9000元【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【题目详解】(1)设与的函数关系式为y=kx+b把(15,550)、(20,500)代入得解得∴(2)∵成本为10元,故每件利润为(x-10)∴销售利润(3)=∵-10<0,∴当时,的值最大,最大值为9000元.【题目点拨】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.20、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解题分析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.21、见解析;见解析【分析】(1)根据题意连接OD并延长交圆上一点E,连接BE即可;(2)根据题意连接AD与BC交与一点,连接此点和O,并延长交圆上一点E,连接BE即可.【题目详解】如图:BE即为所求;如图:BE即为所求;【题目点拨】本题主要考查复杂作图、圆周角定理、垂径定理以及切线的性质的综合应用,解决问题的关键是掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.22、(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解题分析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.23、(1)D;(2)见解析;(3).【分析】(1)根据不可能事件和随机随机的定义进行判断;
(2)画树状图展示所有6种等可能的结果数;
(3)找出A型器材被选中的结果数,然后根据概率公式求解.【题目详解】(1)只选购甲品牌的A型号为不可能事件.
故答案为D;
(2)画树状图为:
共有6种等可能的结果数;
(3)A型器材被选中的结果数为2,
所以A型器材被选中的概率=.【题目点拨】此题考查列表法与树状图法,解题关键在于利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电流转电压电路课程设计
- 2024年版混凝土施工承包合同样本版
- 永济薪酬绩效课程设计
- 家长会学生发言稿13篇
- 2024年度冷链运输危险货物全程安全监控合同3篇
- 2025年山东淄博市省属公费师范毕业生竞岗选聘203人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东淄博临淄区卫生健康系统急需紧缺专业人才招聘37人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁梁山县事业单位招聘工作人员(综合类)32人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济南市章丘区殡仪馆招聘工作人员10人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东泰安市东平县事业单位招考管理单位笔试遴选500模拟题附带答案详解
- 专业人才培养方案调研报告
- 探讨提高呼吸内科患者痰培养标本送检率的护理措施
- 浙江省台州市2023-2024学年高二上学期1月期末语文试题 Word版含解析
- 变刚度单孔手术机器人系统设计方法及主从控制策略
- 2023年重庆辅警招聘考试题库及答案
- 履行职责、作风建设、廉洁自律情况个人述职报告(四篇合集)
- 精神病患者危险度的评估课件
- 《社会工作的理论》课件
- 2021电力建设项目工程总承包管理规范
- 智慧航天物联网
- RM60实用操作课件
评论
0/150
提交评论