版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市部分区(蓟州区)九年级数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或92.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A. B. C. D.3.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-34.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x25.如图所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35° B.30° C.25° D.20°6.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.57.如图,在下列四个几何体中,从正面、左面、上面看不完全相同的是A. B. C. D.8.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.9.如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BDC的度数为()A.15° B.20° C.25° D.30°10.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1个 B.2个 C.1个 D.4个11.抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是().A.出现的点数是7 B.出现的点数不会是0C.出现的点数是2 D.出现的点数为奇数12.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.计算_________.14.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是_____.15.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是_____.16.将抛物线y=x2+2x向右平移1个单位后的解析式为_____.17.如图是反比例函数在第二象限内的图像,若图中的矩形OABC的面积为2,则k=________.18.已知抛物线与x轴只有一个公共点,则m=___________.三、解答题(共78分)19.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.20.(8分)如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标为(﹣1,0),点A坐标为(0,2).一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.(1)求一次函数和反比例函数的关系式;(2)直接写出当x<0时,kx+b﹣<0的解集;(3)在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值.21.(8分)某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.22.(10分)已知:如图,在正方形ABCD中,F是AB上一点,延长CB到E,使BE=BF,连接CF并延长交AE于G.(1)求证:△ABE≌△CBF;(2)将△ABE绕点A逆时针旋转90°得到△ADH,请判断四边形AFCH是什么特殊四边形,并说明理由.23.(10分)如图,△ABC的角平分线BD=1,∠ABC=120°,∠A、∠C所对的边记为a、c.(1)当c=2时,求a的值;(2)求△ABC的面积(用含a,c的式子表示即可);(3)求证:a,c之和等于a,c之积.24.(10分)如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.25.(12分)已知关于的方程(1)求证:无论为何值,方程总有实数根.(2)设,是方程的两个根,记,S的值能为2吗?若能,求出此时的值;若不能,请说明理由.26.如图,已知是一次函数的图象与反比例函数的图象的两个交点(1)求此反比例函数和一次函数的解析式.(2)根据图象写出使反比例函数的值大于一次函数的值的x取值范围.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【题目详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【题目点拨】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.2、A【解题分析】直接得出2的个数,再利用概率公式求出答案.【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是2的概率为:故选A.【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.3、D【解题分析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4、D【分析】可以采用排除法得出答案,由点A(-2,m),B(2,m)关于y轴对称,于是排除选项A、B;再根据B(2,m),C(3,m﹣n)(n>0)的特点和二次函数的性质,可知抛物线在对称轴的右侧呈下降趋势,所以抛物线的开口向下,即a<0.【题目详解】解:∵A(-2,m),B(2,m)关于y轴对称,且在同一个函数的图像上,
而,的图象关于原点对称,∴选项A、B错误,只能选C、D,,
;
∵,在同一个函数的图像上,而y=x2在y轴右侧呈上升趋势,∴选项C错误,而D选项符合题意.故选:D.【题目点拨】本题考查正比例函数、反比例函数、二次函数的图象和性质,熟悉各个函数的图象和性质是解题的基础,发现点的坐标关系是解题的关键.5、C【解题分析】试题分析:CD∥AB,∠D=50°则∠BOD=50°.则∠DOA=180°-50°=130°.则OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.选C.考点:平行线性质点评:本题难度较低,主要考查学生对平行线性质及角平分线性质的掌握.6、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【题目详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【题目点拨】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.7、B【解题分析】根据常见几何体的三视图解答即可得.【题目详解】球的三视图均为圆,故不符合题意;正方体的三视图均为正方形,故不符合题意;圆柱体的主视图与左视图为长方形,俯视图为圆,故符合题意;圆锥的主视图与左视图为等腰三角形,俯视图为圆,故符合题意,故选B.【题目点拨】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义和常见几何体的三视图.8、C【解题分析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.9、A【分析】根据图形旋转的性质得出△ABC≌△EBD,可得出BC=BD,根据图形旋转的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.【题目详解】∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故选:A.【题目点拨】本题考查的是旋转的性质、等腰三角形的性质、直角三角形的性质,熟知图形旋转不变性的性质是解答此题的关键.10、C【解题分析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.11、B【解题分析】分析:必然事件就是一定发生的事件,根据定义即可作出判断.解答:解:A、不可能发生,是不可能事件,故本选项错误,B、是必然事件,故正确,C、不一定发生,是随机事件,故本选项错误,D、不一定发生,是随机事件,故本选项错误.故选B.12、C【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【题目详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为=;故选:C.【题目点拨】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,二、填空题(每题4分,共24分)13、【分析】先分别计算特殊角的三角函数值,负整数指数幂,再合并即可得到答案.【题目详解】解:故答案为:【题目点拨】本题考查的是特殊角三角函数的计算,负整数指数幂的运算,掌握以上知识点是解题的关键.14、1【分析】作PE⊥OA,再根据角平分线的性质得出PE=PD即可得出答案.【题目详解】过P作PE⊥OA于点E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD,∵PD=1,∴PE=1,∴点P到边OA的距离是1.故答案为1.【题目点拨】本题考查角平分线的性质,关键在于牢记角平分线的性质并灵活运用.15、2﹣【分析】设OE交DF于N,由正八边形的性质得出DE=FE,∠EOF==45°,,由垂径定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON=FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,证出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面积公式即可得出结果.【题目详解】解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.【题目点拨】本题考查的是圆的综合,难度系数较高,解题关键是根据正八边形的性质得出每个角的度数.16、y=x2﹣1.【分析】通过配方法先求出原抛物线的顶点坐标,继而得到平移后新抛物线的顶点坐标,然后利用顶点式即可求得新抛物线的解析式.【题目详解】∵y=x2+2x=(x+1)2-1,∴原抛物线的顶点为(-1,-1),∵将抛物线y=x2+2x向右平移1个单位得到新的抛物线,∴新抛物线的顶点为(0,-1),∴新抛物线的解析式为y=x2-1,故答案为:y=x2-1.【题目点拨】本题考查了抛物线的平移,得到原抛物线与新抛物线的顶点坐标是解题的关键.17、-1【解题分析】解:因为反比例函数,且矩形OABC的面积为1,所以|k|=1,即k=±1,又反比例函数的图象在第二象限内,k<0,所以k=﹣1.故答案为﹣1.18、【解题分析】试题分析:根据抛物线解析式可知其对称轴为x=,根据其与x轴只有一个交点,可知其顶点在x轴上,因此可知x=时,y=0,代入可求得m=.点睛:此题主要考查了二次函数的图像与性质,解题关键是明确与x轴只有一个交点的位置是抛物线的顶点在x轴上,因此可求出对称轴代入即可.三、解答题(共78分)19、(1)30°;(2)海监船继续向正东方向航行是安全的.【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【题目详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形20、(1)y=﹣x﹣,y=﹣;(2)﹣3<x<0;(3)点M的坐标为(﹣2,0),AM+BM的最小值为3.【分析】(1)过点B作BF⊥x轴于点F,由△AOC≌△CFB求得点B的坐标,利用待定系数法可求出一次函数和反比例函数的关系式;(2)当x<0时,求出一次函数值y=kx+b小于反比例函数y=的x的取值范围,结合图形即可直接写出答案.(3)根据轴对称的性质,找到点A关于x的对称点A′,连接BA′,则BA′与x轴的交点即为点M的位置,求出直线BA′的解析式,可得出点M的坐标,根据B、A′的坐标可求出AM+BM的最小值.【题目详解】解:(1)过点B作BF⊥x轴于点F,∵点C坐标为(﹣1,0),点A坐标为(0,2).∴OA=2,OC=1,∵∠BCA=90°,∴∠BCF+∠ACO=90°,又∵∠CAO+∠ACO=90°,∴∠BCF=∠CAO,在△AOC和△CFB中∴△AOC≌△CFB(AAS),∴FC=OA=2,BF=OC=1,∴点B的坐标为(﹣3,1),将点B的坐标代入反比例函数解析式可得:,解得:k=﹣3,故可得反比例函数解析式为y=﹣;将点B、C的坐标代入一次函数解析式可得:,解得:.故可得一次函数解析式为.(2)结合点B的坐标及图象,可得当x<0时,<0的解集为:﹣3<x<0;(3)作点A关于x轴的对称点A′,连接BA′与x轴的交点即为点M,
∵A(0,2),作点A关于x轴的对称点A′,∴A′(0,﹣2),设直线BA′的解析式为y=ax+b,将点A′及点B的坐标代入可得:解得:,故直线BA′的解析式为y=﹣x﹣2,令y=0,可得﹣x﹣2=0,解得:x=﹣2,故点M的坐标为(﹣2,0),AM+BM=BM+MA′=BA′=.综上可得:点M的坐标为(﹣2,0),AM+BM的最小值为.【题目点拨】本题考查的是全等三角形判断和性质、待定系数法求一次函数和反比例函数及其性质、根据对称性求最短路线问题.确定一次函数和反比例函数式是解决问题的关键.21、(1);(2);【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【题目详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=.(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A),(C,B),(C,C),(C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=.【题目点拨】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.22、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)由于四边形ABCD是正方形,所以AB=CB=DC,因为AB∥CD,∠CBA=∠ABE,从而得证.(2)根据旋转的性质可知△ABE≌△ADH,从而可证AF=CH,然后利用AB∥CD
即可知四边形AFCH是平行四边形.试题解析:(1)证明:∴,AB//CD∴∴在△ABE和△CBF中∴△ABE≌△CBF(SAS)(2)答:四边形AFCH是平行四边形理由:∵△ABE绕点A逆时针旋转90°得到△ADH∴△ABE≌△ADH∴BE=DH又∵BE=BF(已知)∴BF=DH(等量代换)又∵AB=CD(由(1)已证)∴AB-BF=CD-DH即AF=CH又∵AB//CD即AF//CH∴四边形AFCH是平行四边形23、(1)a=2;(2)或;(3)见解析.【分析】(1)过点作于点,由角平分线定义可得度数,在中,由,可得,由,得点与点重合,从而,由此得解;(2)范围内两种情形:情形1:过点作于点,过点作延长线于点,情形2:过点作于点交AB的延长线于点H,再由三角形的面积公式计算即可;(3)由(2)的结论即可求得结果.【题目详解】(1)过点作于点,∵平分,∴,在中,,,∵,∴点与点重合,∴,∴;(2)情形1:过点作于点,过点作延长线于点,∵平分,∴.∵在中,,,在中,,,∴;情形2:过点作于点交AB的延长线于点H,则,在中,,于是;(3)证明:由(2)可得=,即=,则a+c=ac【题目点拨】此题主要考查学生对解直角三角形的理解及运用,掌握三角函数关系式的恒等变换,正弦定理和余弦定理以及三角形面积的解答方法是解决此题的关键.24、点C坐标为(2,2),y=【分析】过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.【题目详解】解:过C点作CD⊥x轴,垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度展览展示与活动策划合同2篇
- 2024专业酒店投资协议模板发布一
- 2024年员工服务期限劳动协议范本一
- 2024年国内快递运输服务协议样本版B版
- 二零二四年度网络安全防护系统设计合同2篇
- 江南大学《电机与拖动基础》2023-2024学年第一学期期末试卷
- 2024合伙人转让合伙份额协议书
- 2024年主播演艺经纪协议版B版
- 佳木斯大学《经济写作》2021-2022学年第一学期期末试卷
- 济宁学院《音乐基础》2021-2022学年第一学期期末试卷
- 2024年安徽新华书店有限公司招聘笔试参考题库含答案解析
- 林业废弃物生物质能源化利用
- 肝血管瘤护理教学查房范文课件
- 屋顶分布式光伏发电示范项目
- 第7课《珍视亲情+学会感恩》第2框《理解父母+学会感恩》【中职专用】《心理健康与职业生涯》(高教版2023基础模块)
- 危险化学品常识(一书一签)
- 新视野大学英语(第四版)读写教程4(思政智慧版)课件 Unitr 4 Man and nature Section A
- 检验标本缺陷原因分析品管圈鱼骨图柏拉图对策拟定
- 葡萄大棚施工协议书
- 六年级上册书法《走之底》课件
- 网络运维从入门到精通29个实践项目详解
评论
0/150
提交评论