2024届山东省东营市垦利区数学九上期末学业水平测试试题含解析_第1页
2024届山东省东营市垦利区数学九上期末学业水平测试试题含解析_第2页
2024届山东省东营市垦利区数学九上期末学业水平测试试题含解析_第3页
2024届山东省东营市垦利区数学九上期末学业水平测试试题含解析_第4页
2024届山东省东营市垦利区数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省东营市垦利区数学九上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若关于的一元二次方程有实数根,则取值范围是()A. B. C. D.2.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7 C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.04.如果用配方法解方程x2-2x-3=0,那么原方程应变形为(A.(x-1)2=4 B.(x+1)2=45.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有()A.1个B.2个C.3个D.4个6.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2018﹣a﹣b的值是()A.2022 B.2018 C.2017 D.20247.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.8.一元二次方程x2-2x=0根的判别式的值为()A.4 B.2 C.0 D.-49.如图,在正方形网格中,△ABC的三个顶点都在格点上,则cosB的值为()A. B. C. D.110.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.11.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm12.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“”的概率相同的是()A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“红桃”二、填空题(每题4分,共24分)13.点与关于原点对称,则__________.14.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.15.如图,矩形中,,,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_______.16.已知1是一元二次方程的一个根,则p=_______.17.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.18.点P(3,﹣4)关于原点对称的点的坐标是_____.三、解答题(共78分)19.(8分)如图,已知,是的中点,过点作.求证:与相切.20.(8分)已知(1)求的值;(2)若,求的值.21.(8分)寒冬来临,豆丝飘香,豆丝是鄂州民间传统美食;某企业接到一批豆丝生产任务,约定这批豆丝的出厂价为每千克4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,新工人李明第1天生产100千克豆丝,由于不断熟练,以后每天都比前一天多生产20千克豆丝;设李明第x天(,且x为整数)生产y千克豆丝,解答下列问题:(1)求y与x的关系式,并求出李明第几天生产豆丝280千克?(2)设第x天生产的每千克豆丝的成本是p元,p与x之间满足如图所示的函数关系;若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)22.(10分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PC:PB=.(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB上找一点P,使AP=1.②如图③,在BD上找一点P,使△APB∽△CPD.23.(10分)如图,与是位似图形,点O是位似中心,,,求DE的长.24.(10分)长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少.25.(12分)为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)26.一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据△=b2-4ac≥0,一元二次方程有实数根,列出不等式,求解即可.【题目详解】解:∵关于x的一元二次方程有实数根,

解得:.

故选:D.【题目点拨】本题考查一元二次方程根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.2、C【分析】直接利用配方法进而将原式变形得出答案.【题目详解】y=x2-8x-9=x2-8x+16-1=(x-4)2-1.故选C.【题目点拨】此题主要考查了二次函数的三种形式,正确配方是解题关键.3、D【分析】把x=0代入抛物线y=﹣2(x﹣1)2﹣3,即得抛物线y=﹣2(x﹣1)2﹣3与y轴的交点.【题目详解】当x=0时,抛物线y=﹣2(x﹣1)2﹣3与y轴相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,

∴抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为(0,-5).

故选:D.【题目点拨】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点.4、A【解题分析】先移项,再配方,即方程两边同时加上一次项系数一般的平方.【题目详解】解:移项得,x2−2x=3,配方得,x2−2x+1=4,即(x−1)2=4,故选:A.【题目点拨】本题考查了用配方法解一元二次方程,掌握配方法的步骤是解题的关键.5、C【解题分析】试题解析:∵∠BDO=∠BEA=90°,∠DBO=∠EBA,∴△BDO∽△BEA,∵∠BOD=∠COE,∠BDO=∠CEO=90°,∴△BDO∽△CEO,∵∠CEO=∠CDA=90°,∠ECO=∠DCA,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CDA.故选C.6、D【分析】根据题意将x=1代入原方程并整理得出,最后进一步整体代入求值即可.【题目详解】∵x=1是原方程的一个解,∴把x=1代入方程,得:,即.∴,故选:D.【题目点拨】本题主要考查了一元二次方程的解,熟练掌握相关概念是解题关键.7、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【题目详解】根据勾股定理可得:BC=∴tanA=.故选:D.【题目点拨】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.8、A【解题分析】根据一元二次方程判别式的公式进行计算即可.【题目详解】解:在这个方程中,a=1,b=-2,c=0,∴,故选:A.【题目点拨】本题考查一元二次方程判别式,熟记公式正确计算是本题的解题关键.9、B【分析】先根据勾股定理求出AB的长,再根据余弦的定义求解即可.【题目详解】∵AC=2,BC=2,∴AB=,∴cosB=.故选B.【题目点拨】本题考查了勾股定理,以及锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.10、B【解题分析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.11、B【解题分析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.12、B【分析】根据扑克牌的张数,利用概率=频数除以总数即可解题.【题目详解】解:扑克牌一共有54张,所以抽到“”的概率是,A.抽到“大王”的概率是,B.抽到“2”的概率是,C.抽到“小王”的概率是,D.抽到“红桃”的概率是,故选B.【题目点拨】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.二、填空题(每题4分,共24分)13、【分析】直接利用关于原点对称点的性质分析得出答案.【题目详解】解:∵点P(-4,7)与Q(1m,-7)关于原点对称,∴-4=-1m,解得:m=1,故答案为:1.【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号是解题关键.14、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【题目详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【题目点拨】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.15、【分析】阴影面积=矩形面积-三角形面积-扇形面积.【题目详解】作EFBC于F,如图所示:在Rt中,∴=2,∴,在Rt中,,∴,==故答案是:.【题目点拨】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积,解题关键是找到所求的量的等量关系.16、2【分析】根据一元二次方程的根即方程的解的定义,将代入方程中,即可得到关于的方程,解方程即可得到答案.【题目详解】解:∵1是一元二次方程的一个根∴∴故答案是:【题目点拨】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.17、120°【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【题目详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【题目点拨】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.18、(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【题目详解】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【题目点拨】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题(共78分)19、详见解析.【分析】证法一:连接,,,,连接交于点,利用线段垂直平分线的性质和垂径定理的推论证明垂直平分,然后利用垂径定理和平行线的性质求得,从而使问题得证;证法二:连接,,连接交于点,利用垂径定理的推论得到,,然后利用平行线的性质求得,从而使问题得证;证法三:过点作于点,延长交于点,利用垂径定理的推论得到是的中点,然后判断点与点是同一个点,然后然后利用平行线的性质求得,从而使问题得证.【题目详解】证明:证法一:连接,,,,连接交于点.∵,∴点在的垂直平分线上.∵是的中点,∴,∴,∴点在的垂直平分线上,∴垂直平分,∴,∵,∴,∴,∵点为半径的外端点,∴与相切.证法二:连接,,连接交于点.∵是的中点,∴,∴,∴,∴,∵,∴,∴,∵点为半径的外端点,∴与相切.证法三:过点作于点,延长交于点,∴,,∴是的中点,∵点是的中点,∴点与点是同一个点.∵,∴,∴,∵点为半径的外端点,∴与相切.【题目点拨】本题考查切线的判定及垂径定理的推论,掌握相关定理灵活应用解题是本题的解题关键.20、(1)3;(2)a=-4,b=-6,c=-8.【解题分析】(1)设,可得,,,代入原式即可解答;(2)把,,,带入(2)式即可计算出k的值,从而求解.【题目详解】(1)设,则,,∴(2)由(1)解得,,,【题目点拨】本题考查比例的性质,设是解题关键.21、(1),第10天生产豆丝280千克;(2)当x=13时,w有最大值,最大值为1.【分析】(1)根据题意可得关系式为:y=20x+80,把y=280代入y=20x+80,解方程即可求得;

(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;【题目详解】解:(1)依题意得:令,则,解得答:第10天生产豆丝280千克.(2)由图象得,当0<x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,解得∴p=0.1x+1,①1≤x≤10时,w=(4-2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);②10<x≤20时,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,=-2(x-13)2+1,∵a=-2<0,∴当x=-=13时,w最大=1(元)综上,当x=13时,w有最大值,最大值为1.【题目点拨】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.22、(1)1:1;(2)①如图2所示,点P即为所要找的点;见解析;②如图1所示,作点A的对称点A′,见解析;【分析】(1)根据两条直线平行、对应线段成比例即可解答;(2)①先用勾股定理求得AB的长,再根据相似三角形的判定方法即可找到点P;②先作点A关于BD的对称点A',连接A'C与BD的交点即为要找的点P.【题目详解】解:(1)图1中,∵AB∥CD,∴,故答案为1:1.(2)①如图2所示,点P即为所要找的点;②如图1所示,作点A的对称点A′,连接A′C,交BD于点P,点P即为所要找的点,∵AB∥CD,∴△APB∽△CPD.【题目点拨】本题考查了相似三角形的做法,掌握相似三角形的判定方法是解答本题的关键.23、1【分析】已知△ABC与△DEF是位似图形,且OA=AD,则位似比是OB:OE=1:2,从而可得DE.【题目详解】解:∵△ABC与△DEF是位似图形,

∴△ABC∽△DEF,∵OA=AD,

∴位似比是OB:OE=1:2,

∵AB=5,∴DE=1.【题目点拨】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.24、(1)答案见解析;(2)【分析】(1)画出树状图即可;(2)根据树状图可以直观的得到共有6种情况,选中A的情况有2种,进而得到概率.【题目详解】解:(1)如图所示:(2)所有的情况有6种,A型器材被选中情况有2种中,概率是.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论