2024届安徽省亳州市谯城区数学九年级第一学期期末达标检测试题含解析_第1页
2024届安徽省亳州市谯城区数学九年级第一学期期末达标检测试题含解析_第2页
2024届安徽省亳州市谯城区数学九年级第一学期期末达标检测试题含解析_第3页
2024届安徽省亳州市谯城区数学九年级第一学期期末达标检测试题含解析_第4页
2024届安徽省亳州市谯城区数学九年级第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省亳州市谯城区数学九年级第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.将二次函数的图象向右平移2个单位,再向下平移3个单位,得到的函数图象的表达式是()A. B.C. D.2.一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是()A. B. C. D.3.已知二次函数y=﹣x2﹣bx+1(﹣5<b<2),则函数图象随着b的逐渐增大而()A.先往右上方移动,再往右平移B.先往左下方移动,再往左平移C.先往右上方移动,再往右下方移动D.先往左下方移动,再往左上方移动4.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③5.若,相似比为2,且的面积为12,则的面积为()A.3 B.6 C.24 D.486.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.7.如图,AB是⊙的直径,AC是⊙的切线,A为切点,BC与⊙交于点D,连结OD.若,则∠AOD的度数为()A. B. C. D.8.在下列四个汽车标志图案中,是中心对称图形的是()A. B. C. D.9.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.m C.m D.4m10.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(

)A. B. C. D.11.二次函数的图象与y轴的交点坐标是()A.(0,1) B.(1,0) C.(-1,0) D.(0,-1)12.已知函数y=ax2-2ax-1(a是常数且a≠0),下列结论正确的是()A.当a=1时,函数图像过点(-1,1)B.当a=-2时,函数图像与x轴没有交点C.当a,则当x1时,y随x的增大而减小D.当a,则当x1时,y随x的增大而增大二、填空题(每题4分,共24分)13.如图,正方形OABC与正方形ODEF是位似图,点O为位似中心,位似比为2:3,点A的坐标为(0,2),则点E的坐标是____.14.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.15.用一根长为31cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm1.16.如图,正方形的边长为8,点在上,交于点.若,则长为__.17.抛物线的开口方向是_____.18.如图,在中,、分别是边、上的点,且∥,若与的周长之比为,,则_____.三、解答题(共78分)19.(8分)为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等(1)若从中只录用一人,恰好选到思政专业毕业生的概率是:(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.20.(8分)如图,在宽为40m,长为64m的矩形地面上,修筑三条同样宽的道路,每条道路均与矩形地面的一条边平行,余下的部分作为耕地,要使得耕地的面积为2418m2,则道路的宽应为多少?21.(8分)解答下列问题:(1)计算:;(2)解方程:;22.(10分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x3000320035004000y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.23.(10分)已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.(1)求直线AC的解析式;(2)试求出当t为何值时,△OAC与△PAQ相似.24.(10分)已知一个二次函数的图象经过点、和三点.(1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.25.(12分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设,(其中表示△BCE的面积,表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当时,请直接写出线段AE的长.26.山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是元,经调查发现,当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶(售价不高于元)(1)售价为多少时可以使每天的利润最大?最大利润是多少?(2)要使每天的利润不低于元,每瓶竹叶青酒的售价应该控制在什么范围内?

参考答案一、选择题(每题4分,共48分)1、C【分析】根据平移的规律进行求解即可得答案.【题目详解】将二次函数的图象向右平移2个单位,可得:再向下平移3个单位,可得:故答案为:C.【题目点拨】本题考查了平移的规律:上加下减,最加右减,注意上下平移动括号外的,左右平移动括号里的.2、A【题目详解】解:列表如下:

-214-2---(1,-2)(4,-2)1(-2,1)---(4,1)4(-2,4)(1,4)---所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2-4q≥0的情况有4种,则P(满足方程的根)=故选:A.3、D【分析】先分别求出当b=﹣5、0、2时函数图象的顶点坐标即可得结论.【题目详解】解:二次函数y=﹣x2﹣bx+1(﹣5<b<2),当b=﹣5时,y=﹣x2+5x+1=﹣(x﹣)2+,顶点坐标为(,);当b=0时,y=﹣x2+1,顶点坐标为(0,1);当b=2时,y=﹣x2﹣2x+1=﹣(x+1)2+2,顶点坐标为(﹣1,2).故函数图象随着b的逐渐增大而先往左下方移动,再往左上方移动.故选:D.【题目点拨】本题主要考查了二次函数图象,掌握二次函数的性质是解决本题的关键.4、B【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【题目详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【题目点拨】本题考查了利用频率估计概率,明确概率的定义是解题的关键.5、A【解题分析】试题分析:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为12,∴△DEF的面积为:12×=1.故选A.考点:相似三角形的性质.6、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【题目详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【题目点拨】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.7、C【分析】由AC是⊙的切线可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,则∠BDO=40最后由∠AOD=∠OBD+∠OBD计算即可.【题目详解】解:∵AC是⊙的切线∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案为C.【题目点拨】本题考查了圆的切线的性质、等腰三角形以及三角形外角的概念.其中解题关键是运用圆的切线垂直于半径的性质.8、B【解题分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,符合此定义的只有选项B.故选B.9、C【题目详解】如图,由题意得:AP=3,AB=6,∴在圆锥侧面展开图中故小猫经过的最短距离是故选C.10、A【解题分析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.11、D【题目详解】当x=0时,y=0-1=-1,∴图象与y轴的交点坐标是(0,-1).故选D.12、D【分析】根据二次函数的图象与性质逐项分析即可.【题目详解】y=ax2-2ax-1(a是常数且a≠0)A、当a=1时,y=x2−2x−1,令x=−1,则y=2,此项错误;B、当a=−2时,y=2x2+4x−1,对应的二次方程的根的判别式Δ=42−4×2×(−1)=24>0,则该函数的图象与x轴有两个不同的交点,此项错误;C、当a>0,y=ax2−2ax−1=a(x-1)2-a+1,则x≥1时,y随x的增大而增大,此项错误;D、当a<0时,y=ax2−2ax−1=a(x-1)2-a+1,则x≤1时,y随x的增大而增大,此项正确;故答案为:D.【题目点拨】本题考查了二次函数的图象与性质,掌握熟记图象特征与性质是解题关键.错因分析:较难题.失分原因可能是:①不会判断抛物线与x轴的交点情况;②不能画出拋物线的大致图象来判断增减性.二、填空题(每题4分,共24分)13、(3,3)【分析】根据位似图形的比求出OD的长即可解题.【题目详解】解:∵正方形OABC与正方形ODEF是位似图,位似比为2:3,∴OA:OD=2:3,∵点A的坐标为(0,2),即OA=2,∴OD=3,DE=EF=3,故点E的坐标是(3,3).【题目点拨】本题考查了位似图形,属于简单题,根据位似图形的性质求出对应边长是解题关键.14、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【题目详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【题目点拨】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.15、2.【解题分析】试题解析:设矩形的一边长是xcm,则邻边的长是(16-x)cm.则矩形的面积S=x(16-x),即S=-x1+16x,当x=-时,S有最大值是:2.考点:二次函数的最值.16、6【分析】根据正方形的性质可得OC∥AB,OB=,从而证出△COQ∽△PBQ,然后根据相似三角形的性质即可求出,从而求出的长.【题目详解】解:∵正方形的边长为8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案为:6.【题目点拨】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.17、向上【分析】根据二次项系数的符号即可确定答案.【题目详解】其二次项系数为2,且二次项系数:2>0,所以开口方向向上,故答案为:向上.【题目点拨】本题考查了二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)图象的开口方向与a的值有关是解题的关键.18、2.【解题分析】试题分析:因为DE∥BC,所以△ADE∽△ABC,因为相似三角形的周长之比等于相似比,所以AD:AB=2:3,因为AD=4,所以AB=6,所以DB=AB-AD=6-4=2.故答案为2.考点:相似三角形的判定与性质.三、解答题(共78分)19、(1);(2)恰好选到的是一名思政研究生和一名历史本科生的概率为.【解题分析】(1)由概率公式即可得出结果;

(2)设思政专业的一名研究生为A、一名本科生为B,历史专业的一名研究生为C、一名本科生为D,画树状图可知:共有12个等可能的结果,恰好选到的是一名思政研究生和一名历史本科生的结果有2个,即可得出结果.【题目详解】(1)若从中只录用一人,恰好选到思政专业毕业生的概率是;故答案为:;(2)设思政专业的一名研究生为A、一名本科生为B,历史专业的一名研究生为C、一名本科生为D,画树状图如图:共有12个等可能的结果,恰好选到的是一名思政研究生和一名历史本科生的结果有2个,∴恰好选到的是一名思政研究生和一名历史本科生的概率为.故答案为:【题目点拨】本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.20、道路的宽应为1m.【解题分析】分析:根据题意,设道路的宽为xm,根据矩形的面积找到等量关系,列方程求解即可.详解:解:设道路的宽应为xm,则(64-2x)(40-x)=2418,整理,得x2-72x+71=0,解得x1=1,x2=71(不合题意,舍去).答:道路的宽应为1m.点睛:此题主要考查了一元二次方程几何问题中的应用,分清矩形的特点,确定矩形的面积是解题关键,注意解出来的结果要符合实际情况.21、(1);(2),【分析】(1)先按照二次根式的乘除法计算,然后去条绝对值,再计算加减法;(2)采用配方法解方程即可.【题目详解】解:(1)原式;(2)∴,【题目点拨】本题考查了二次根式的混合运算与解一元二次方程,熟练掌握二次根式的乘除运算法则和配方法是解题的关键.22、(1)y与x间的函数关系是.(2)填表见解析;(3)当每辆车的月租金为4050元时,公司获得最大月收益307050元【解题分析】(1)判断出y与x的函数关系为一次函数关系,再根据待定系数法求出函数解析式.(2)根据题意可用代数式求出出租车的辆数和未出租车的辆数即可.(3)租出的车的利润减去未租出车的维护费,即为公司最大月收益.【题目详解】解:(1)由表格数据可知y与x是一次函数关系,设其解析式为,将(3000,100),(3200,96)代入得,解得:.∴.将(3500,90),(4000,80)代入检验,适合.∴y与x间的函数关系是.(2)填表如下:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)设租赁公司获得的月收益为W元,依题意可得:当x=4050时,Wmax=307050,∴当每辆车的月租金为4050元时,公司获得最大月收益307050元23、(1);(2)当t=或时,△OAC与△APQ相似.【分析】(1)要求直线AC的解析式,需要求出点A、点C的坐标,可以利用等积法求得C点的纵坐标,利用勾股定理求得横坐标,利用待定系数法求得直线的解析式;(2)对于相似要分情况进行讨论,根据对应线段成比例可求得t的数值.【题目详解】解:(1)过点C作CE⊥OA,垂足为E,在Rt△OCA中,AC==3,∴5×CE=3×4,∴CE=,在Rt△OCE中,OE==,∴C(,),A(5,0),设AC的解析式为y=kx+b,则,解得:,∴;(2)当0≤t≤2.5时,P在OA上,因为∠OAQ≠90°,故此时△OAC与△PAQ不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ∽△OCA,故==,∴=,∴t=,∵t>2.5,∴t=符合条件.②若∠AQP=90°,则△APQ∽△OAC,故==,∴=,∴t=,∵t>2.5,∴t=符合条件.综上可知,当t=或时,△OAC与△APQ相似.【题目点拨】本题考查了求一次函数的解析式、相似三角形的判定与性质、平行四边形的性质,关于动点的问题要注意对问题进行分类讨论.24、(1);(2)对称轴是直线,顶点坐标是.【分析】(1)直接用待定系数法求出二次函数的解析式;(2)根据对称轴和顶点坐标的公式求解即可.【题目详解】(1)设二次函数解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论