版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省潮州市潮安区2024届数学九上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知,是抛物线上两点,则正数()A.2 B.4 C.8 D.162.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.3.为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:组别(cm)x<150150≤x<155155≤x<160160≤x<165x≥165频数22352185根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.754.函数与抛物线的图象可能是().A. B. C. D.5.如图,在菱形中,,,,则的值是()A. B.2 C. D.6.已知,如图,E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点)的坐标()A.(-2,1) B.(2,-1) C.(2,-1)或(-2,-1) D.(-2,1)或(2,-1)7.下列是随机事件的是()A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球B.平行于同一条直线的两条直线平行C.掷一枚图钉,落地后图钉针尖朝上D.掷一枚质地均匀的骰子,掷出的点数是78.抛物线y=﹣(x+1)2﹣3的顶点坐标是()A.(1,﹣3) B.(1,3) C.(﹣1,3) D.(﹣1,﹣3)9.如图所示的几何体,它的左视图是()A. B. C. D.10.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数().A.50° B.60° C.100° D.120°11.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A. B. C. D.12.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.12二、填空题(每题4分,共24分)13.如图,在矩形中,,点在边上,,则BE=__________;若交于点,则的长度为________.14.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)
15.如图,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.如果∠BAC=30°,∠DAE=105°,则y与x之间的函数关系式为________________.16.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.17.若m﹣=3,则m2+=_____.18.如图,从外一点引的两条切线、,切点分别是、,若,是弧上的一个动点(点与、两点不重合),过点作的切线,分别交、于点、,则的周长是________.三、解答题(共78分)19.(8分)如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=,cos∠DBC=,求DC和AB的长.20.(8分)如图,在中,,.(1)在边上求作一点,使得.(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,求证:为线段的黄金分割点.21.(8分)如图,是半圆的直径,是半圆上的点,且于点,连接,若.求半圆的半径长;求的长.22.(10分)如图,二次函数y=x2+bx+c的图象与x轴相交于点A、B两点,与y轴相交于点C(0,﹣3),抛物线的对称轴为直线x=1.(1)求此二次函数的解析式;(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并证明你的结论.23.(10分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.24.(10分)关于x的方程的解为正数,且关于y的不等式组有解,求符合题意的整数m.25.(12分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米?26.将如图所示的牌面数字1、2、3、4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是奇数的概率是;(2)从中随机抽出两张牌,两张牌牌面数字的和是6的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用树状图或列表的方法求组成的两位数恰好是3的倍的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数的对称性可得,代入二次函数解析式即可求解.【题目详解】解:∵,是抛物线上两点,∴,∴且n为正数,解得,故选:C.【题目点拨】本题考查二次函数的性质,掌握二次函数的性质是解题的关键.2、C【解题分析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.3、D【分析】直接利用不低于155cm的频数除以总数得出答案.【题目详解】∵身高不低于155cm的有52+18+5=1(人),∴随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是:=0.1.故选:D.【题目点拨】本题考查了概率公式,正确应用概率公式是解题关键.4、C【分析】一次函数和二次函数与y轴交点坐标都是(0,1),然后再对a分a>0和a<0讨论即可.【题目详解】解:由题意知:与抛物线与y轴的交点坐标均是(0,1),故排除选项A;当a>0时,一次函数经过第一、二、三象限,二次函数开口向上,故其图像有可能为选项C所示,但不可能为选项B所示;当a<0时,一次函数经过第一、二、四象限,二次函数开口向下,不可能为为选项D所示;故选:C.【题目点拨】本题考查了一次函数与二次函数的图像关系,熟练掌握函数的图像与系数之间的关系是解决本类题的关键.5、B【分析】由菱形的性质得AD=AB,由,求出AD的长度,利用勾股定理求出DE,即可求出的值.【题目详解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故选:B.【题目点拨】本题考查了三角函数,菱形的性质,以及勾股定理,解题的关键是根据三角函数值正确求出菱形的边长,然后进行计算即可.6、D【分析】由E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,根据位似图形的性质,即可求得点E的对应点的坐标.【题目详解】解:∵E(-4,2),以O为位似中心,按比例尺1:2把△EFO缩小,∴点E的对应点的坐标为:(-2,1)或(2,-1).故选D.【题目点拨】本题考查位似变换;坐标与图形性质,利用数形结合思想解题是关键.7、C【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【题目详解】A.口袋里共有5个球,都是红球,从口袋里摸出1个球是黄球,是不可能事件,故不符合题意;B.平行于同一条直线的两条直线平行,是必然事件,故不符合题意;C.掷一枚图钉,落地后图钉针尖朝上,是随机事件,故符合题意;D.掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,故不符合题意,故选C.【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、D【解题分析】根据二次函数顶点式解析式写出顶点坐标即可.【题目详解】解:抛物线y=﹣(x+1)2﹣3的顶点坐标是(﹣1,﹣3).故选:D.【题目点拨】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.9、D【解题分析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.10、B【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【题目详解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B.【题目点拨】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.11、C【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【题目详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为=;故选:C.【题目点拨】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,12、B【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【题目详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.二、填空题(每题4分,共24分)13、5【分析】根据矩形的性质得出∠DAE=∠AEB,再由AB和∠DAE的正切值可求出BE,利用勾股定理计算出AE的长,再证明△ABE∽△FEA,根据相似三角形的性质可得,代入相应线段的长可得EF的长,再在在Rt△AEF中里利用勾股定理即可算出AF的长,进而得到DF的长.【题目详解】解:∵点在矩形的边上,∴,∴.在中,,∴,∴.∵∴△ABE∽△FEA,∴,即,解得.∵.∴.【题目点拨】此题主要考查了相似三角形的判定与性质,以及勾股定理的应用,关键是掌握相似三角形的判定方法和性质定理.相似三角形对应边的比相等,两个角对应相等的三角形相似.14、或【解题分析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.15、【解题分析】∵∠BAC=30°,AB=AC,∴∠ACB=∠ABC=,∴∠ACE=∠ABD=180°-75°=105°,∵∠DAE=105°,∠BAC=30°,∴∠DAB+∠CAE=105°-30°=75°,又∵∠DAB+∠ADB=∠ABC=75°,∴∠ADB=∠CAE.∴△ADB∽△EAC,∴,即,∴.故答案为.16、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【题目详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【题目点拨】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.17、1【分析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案.【题目详解】解:∵=m2﹣2+=9,∴m2+=1,故答案为1.【题目点拨】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的变形.18、【解题分析】由切线长定理得CD=AD,CE=BE,PA=PB,表示出△PED的周长即可解题.【题目详解】解:由切线长定理得CD=AD,CE=BE,PA=PB;
所以△PED的周长=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=2PA=16cm.【题目点拨】本题考查了圆的切线,属于简单题,熟悉圆的切线长定理是解题关键.三、解答题(共78分)19、DC=6;AB=,【分析】如图,作EH⊥AC于H.解直角三角形分别求出DE,EB,BC,CD,再利用相似三角形的性质求出AE即可解决问题.【题目详解】如图,作EH⊥AC于H.∵DE⊥BD,∴∠BDE=90°,∵tan∠ABD==,BD=10,∴DE=5,BE===5,∵∠C=90°,cos∠DBC==,∴BC=8,CD===6,∵EH∥BC,∴△AEH∽△ABC,∴=,∴=,∴AE=,∴AB=AE+BE=+5=.【题目点拨】本题考查解直角三角形的应用,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识20、(1)见解析;(2)证明见解析.【分析】(1)利用等腰三角形的性质及AA定理,做AB的垂直平分线或∠ABC的角平分线都可,(2)利用相似三角形的性质得到,然后根据黄金分割的定义得到结论.【题目详解】解:(1)作法一:如图1.点为所求作的点.作法二:如图2.点为所求作的点.(2)证明:∵,∴.根据(1)的作图方法,得.∴.∴点为线段的黄金分割点.【题目点拨】本题考查等腰三角形的性质,相似三角形的判定和性质及尺规作图,黄金分割的定义,掌握相关性质定理是本题的解题关键.21、半圆的半径为;【分析】(1)根据垂径定理的推论得到OD⊥AC,AE=AC,设圆的半径为r,根据勾股定理列出方程,解方程即可;(2)由题意根据圆周角定理得到∠C=90°,根据勾股定理计算即可.【题目详解】解:于点且,设半径为,则在中有解得:即半圆的半径为;为半圆的直径则在中有.【题目点拨】本题考查的是圆心角、弧、弦的关系定理、垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.22、(1)y=x2﹣2x﹣3;(2)四边形EFCD是正方形,见解析【分析】(1)抛物线与y轴相交于点C(0,﹣3),对称轴为直线x=1知c=﹣3,,据此可得答案;(2)结论四边形EFCD是正方形.如图1中,连接CE与DF交于点K.求出E、F、D、C四点坐标,只要证明DF⊥CE,DF=CE,KC=KE,KF=KD即可证明.【题目详解】(1)∵抛物线与y轴相交于点C(0,﹣3),对称轴为直线x=1∴c=﹣3,,即b=﹣2,∴二次函数解析式为;(2)四边形EFCD是正方形.理由如下:如图,连接CE与DF交于点K.∵,∴顶点D(1,4),∵C、E关于对称轴对称,C(0,﹣3),∴E(2,﹣3),∵A(﹣1,0),设直线AE的解析式为,则,解得:,∴直线AE的解析式为y=﹣x﹣1.∴F(1,﹣2),∴CK=EK=1,FK=DK=1,∴四边形EFCD是平行四边形,又∵CE⊥DF,CE=DF,∴四边形EFCD是正方形.【题目点拨】本题是二次函数综合题,主要考查了待定系数法、一次函数的应用、正方形的判定和性质等知识,解题的关键是灵活运用待定系数法确定函数解析式.23、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【题目详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【题目点拨】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.24、m的值是-1或1或2或3或4或5【分析】根据题意先求出方程的解与不等式组的解集,再根据题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《高管团队特征、风险偏好与企业创新绩效》
- 2024年度船舶建造合同with标的为一艘万吨级货船
- 《转基因棉花和玉米种植对土壤中AM真菌群落结构的影响》
- 《香术七味神阙贴治疗脾虚型肺癌化疗后消化道副反应的临床疗效观察及对胃泌素水平的影响》
- 《基于微更新的城市居住社区更新规划研究》
- 《节能减排指标约束下的民族地区经济发展问题研究》
- 2024保健品进出口贸易合同
- 2024年影视制作合同投资及分成比例
- 2024年成都客车上岗证模拟考试
- 623组合(分层作业)2022-2023学年高二数学(人教A版2019选修第三册)
- 实验室安全准入教育(通识A课程)学习通超星课后章节答案期末考试题库2023年
- 《绘画的构图》课件
- 三年级数学上册第三单元《测量》课件
- 高支模施工难点
- 大学生劳动教育-合肥工业大学中国大学mooc课后章节答案期末考试题库2023年
- 诉讼前民事调解委托书
- 孩子探视权起诉书
- 国家开放大学一网一平台电大《当代中国政治制度》形考任务1-4网考题库及答案
- 澄明之境:青泽谈投资之道
- 无人机基础 教案
- 机电运输专项检查实施方案
评论
0/150
提交评论