江苏省南京市南航附中2024届数学九年级第一学期期末学业水平测试模拟试题含解析_第1页
江苏省南京市南航附中2024届数学九年级第一学期期末学业水平测试模拟试题含解析_第2页
江苏省南京市南航附中2024届数学九年级第一学期期末学业水平测试模拟试题含解析_第3页
江苏省南京市南航附中2024届数学九年级第一学期期末学业水平测试模拟试题含解析_第4页
江苏省南京市南航附中2024届数学九年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市南航附中2024届数学九年级第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.方程x(x﹣1)=0的解是().A.x=1 B.x=0 C.x1=1,x2=0 D.没有实数根2.若是一元二次方程,则的值是()A.-1 B.0 C.1 D.±13.如图,⊙O是直角△ABC的内切圆,点D,E,F为切点,点P是上任意一点(不与点E,D重合),则∠EPD=()A.30° B.45° C.60° D.75°4.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.5.如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是()A.6 B.8 C.12 D.166.如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE与BC相切于点E,连接BD,则阴影部分的面积为()A.π B. C.π+2 D.+47.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°8.设,,是抛物线上的三点,则的大小关系为()A. B. C. D.9.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是()A. B. C. D.10.如图所示的几何体的主视图为()A. B. C. D.11.若一元二次方程x2+2x+m=0中的b2﹣4ac=0,则这个方程的两根为()A.x1=1,x2=﹣1 B.x1=x2=1 C.x1=x2=﹣1 D.不确定12.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:1二、填空题(每题4分,共24分)13.抛物线与x轴只有一个公共点,则m的值为________.14.P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,将△ABP逆时针旋转,使得AB与AC重合,则以PA、PB、PC的长为边的三角形的三个角∠PCQ:∠QPC:∠PQC=________.15.已知二次函数的图象与轴的一个交点为,则它与轴的另一个交点的坐标是__________.16.已知两个数的差等于2,积等于15,则这两个数中较大的是.17.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,则∠C=_______.18.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.(1)画出△A'B'C',并写出点A',B',C'的坐标;(2)求经过点B',B,A三点的抛物线对应的函数解析式.20.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为一个单位长度的正方形).(1)请画出△ABC关于原点对称的△A1B1C1;(1)请画出△ABC绕点B逆时针旋转90°后的△A1B1C1.21.(8分)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,过点B、点C分别作BE∥CD,CE∥BD.(1)求证:四边形BECD是菱形;(2)若∠A=60°,AC=,求菱形BECD的面积.22.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点.⑴求该反比例函数和一次函数的解析式;⑵在轴上找一点使最大,求的最大值及点的坐标;⑶直接写出当时,的取值范围.23.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大地方便了人们的出行.中国北斗导航已经全球组网,它已经走进了人们的日常生活.如图,某校周末组织学生利用导航到某地(用表示)开展社会实践活动,车辆到达地后,发现地恰好在地的正北方向,且距离地8千米.导航显示车辆应沿北偏东60°方向行驶至地,再沿北偏西45°方向行驶一段距离才能到达地.求两地间的距离(结果精确到0.1千米).(参考数据:)25.(12分)如图,放置于平面直角坐标系中,按下面要求画图:(1)画出绕原点逆时针旋转的.(2)求点在旋转过程中的路径长度.26.如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF

参考答案一、选择题(每题4分,共48分)1、C【解题分析】根据因式分解法解方程得到x=0或x﹣1=0,解两个一元一次方程即可.【题目详解】解:x(x﹣1)=0x=0或x﹣1=0∴x1=1,x2=0,故选C.【题目点拨】本题考查因式分解法解一元二次方程,熟练掌握一元二次方程的解法是关键.2、C【分析】根据一元二次方程的概念即可列出等式,求出m的值.【题目详解】解:若是一元二次方程,则,解得,又∵,∴,故,故答案为C.【题目点拨】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.3、B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【题目详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故选:B.【题目点拨】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.4、D【解题分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【题目详解】解:∵DE∥BC

∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【题目点拨】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.5、B【分析】根据题目中的函数解析式可以求得该抛物线与x轴的交点坐标和顶点的坐标,再根据在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,可知其中一点一定在顶点处,从而可以求得m的值.【题目详解】∵抛物线y=(x+1)(x-3)与x轴相交于A、B两点,∴点A(-1,0),点B(3,0),该抛物线的对称轴是直线x==1,∴AB=3-(-1)=4,该抛物线顶点的纵坐标是:y=(1+1)×(1-3)=-4,∵在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,∴m==8,故选B.【题目点拨】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6、A【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE和四边形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【题目详解】连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC.∵四边形ABCD为矩形,OA=OD=2,而CD=2,∴四边形ODCE和四边形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴阴影部分的面积=S扇形EOD.故选:A.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形面积公式.7、D【解题分析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.8、D【分析】根据二次函数的性质得到抛物线的开口向上,对称轴为直线x=-2,然后根据三个点离对称轴的远近判断函数值的大小.【题目详解】,∵a=1>0,∴抛物线开口向上,对称轴为直线x=-2,∵离直线x=-2的距离最远,离直线x=-2的距离最近,∴.故选:D.【题目点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.9、D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【题目详解】解:圆锥的底面周长为:2×4=,则圆锥侧面展开图的面积是.故选:D.【题目点拨】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.10、B【分析】根据三视图的定义判断即可.【题目详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【题目点拨】本题考查了三视图知识.11、C【分析】根据求出m的值,再把求得的m的值代回原方程,然后解一元二次方程即可求出方程的两个根.【题目详解】解:∵△=b2﹣4ac=0,∴4﹣4m=0,解得:m=1,∴原方程可化为:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.故选C.【题目点拨】本题考查了一元二次方程根的判别式和一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12、A【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【题目详解】∵如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF,∴将△ABC的三边缩小到原来的,此时点O为位似中心且△ABC与△DEF的位似比为2:1,故选项A说法错误,符合题意;△ABC与△DEF是位似图形,故选项B说法正确,不合题意;△ABC与△DEF是相似图形,故选项C说法正确,不合题意;△ABC与△DEF的面积之比为4:1,故选项D说法正确,不合题意;故选:A.【题目点拨】此题主要考查了位似图形的性质,正确的记忆位似图形性质是解决问题的关键.二、填空题(每题4分,共24分)13、8【解题分析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.14、3:4:2【分析】将△APB绕A点逆时针旋转60得△AQC,显然有△AQC≌△APB,连PQ,可得△AQP是等边三角形,△QCP的三边长分别为PA,PB,PC,由∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,可得∠APB=100,∠BPC=120,∠CPA=140,可得答案.【题目详解】解:如图,将△APB绕A点逆时针旋转60得△AQC,显然有△AQC≌△APB,连PQ,AQ=AP,∠QAP=60,△AQP是等边三角形,PQ=AP,QC=PB,△QCP的三边长分别为PA,PB,PC,∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,∠APB=100,∠BPC=120,∠CPA=140,∠PQC=∠AQC-∠AQP=∠APB-∠AQP=100-60=40,∠QPC=∠APC-∠APQ=140-60=80,∠PCQ=180-(40+80)=60,∠PCQ:∠QPC:∠PQC=3:4:2,故答案为:3:4:2.【题目点拨】本题主要考查旋转的性质及等边三角形的性质,综合性大,注意运算的准确性.15、【分析】确定函数的对称轴=-2,即可求出.【题目详解】解:函数的对称轴=-2,则与轴的另一个交点的坐标为(-3,0)故答案为(-3,0)【题目点拨】此题主要考查了抛物线与x轴的交点和函数图像上点的坐标的特征,熟练掌握二次函数与坐标轴的交点、二次函数的对称轴是解题的关键.16、5【分析】设这两个数中的大数为x,则小数为x﹣2,由题意建立方程求其解即可.【题目详解】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为5;考点:一元二次方程的应用.17、26°【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可.【题目详解】连接OD,如图,

∵CD与⊙O相切于点D,

∴OD⊥CD,

∴∠ODC=90°,

∴∠ODA=∠CDA-90°=122°-90°=32°,

∵OA=OD,

∴∠A=∠ODA=32°,

∴∠C=180°-∠ADC+∠A=180°-122°-32°=26°.

故答案为:.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.18、【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【题目详解】解:如图,过O作OD⊥AB于C,交⊙O于D,

∵CD=4,OD=10,

∴OC=6,

又∵OB=10,

∴Rt△BCO中,BC=∴AB=2BC=1.

故答案是:1.【题目点拨】此题主要考查了垂径定理以及勾股定理,得出BC的长是解题关键.三、解答题(共78分)19、(1)见解析;(2)抛物线的解析式为y=﹣x2+x+1.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)设抛物线的解析式为y=a(x+2)(x﹣1),把B(0,1)代入求出a即可.【题目详解】解:(1)如图△A'B'C'即为所求.A′(0,2),B′(1,0),C′(1,4)(2)设抛物线的解析式为y=a(x+2)(x﹣1),把B(0,1)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+x+1.【题目点拨】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.20、(1)见解析;(1)见解析【分析】(1)利用关于原点对称的点的坐标特征找出A1,B1,C1,然后描点即可;

(1)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可.【题目详解】解:(1)如图,△A1B1C1为所作;(1)如图,△A1B1C1为所作.【题目点拨】本题考查了作图-根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21、(1)见解析;(2)面积=【分析】(1)先证明四边形BECD是平行四边形,再根据直角三角形中线的性质可得CD=BD,再根据菱形的判定即可求解;

(2)根据图形可得菱形BECD的面积=直角三角形ACB的面积,根据三角函数可求BC,根据直角三角形面积公式求解即可.【题目详解】(1)证明:∵BE∥CD,CE∥BD,

∴四边形BECD是平行四边形,

∵Rt△ABC中点D是AB中点,

∴CD=BD,

∴四边形BECD是菱形;

(2)解:∵Rt△ABC中,∠A=60°,AC=,∴BC=AC=3,∴直角三角形ACB的面积为3×÷2=,∴菱形BECD的面积是.【题目点拨】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.22、⑴,;⑵的最大值为,;⑶或.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y1=x+2,求得与y轴的交点P,此交点即为所求;(3)根据AB两点的横坐标及直线与双曲线的位置关系求x的取值范围.【题目详解】⑴.∵在反比例函数上∴∴反比例函数的解析式为把代入可求得∴.把代入为解得.∴一次函数的解析式为.⑵的最大值就是直线与两坐标轴交点间的距离.设直线与轴的交点为.令,则,解得,∴令,则,,∴∴,∴的最大值为.⑶根据图象的位置和图象交点的坐标可知:当时的取值范围为;或.【题目点拨】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.23、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【题目详解】(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【题目点拨】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论