宝鸡市重点中学2024届数学九上期末监测模拟试题含解析_第1页
宝鸡市重点中学2024届数学九上期末监测模拟试题含解析_第2页
宝鸡市重点中学2024届数学九上期末监测模拟试题含解析_第3页
宝鸡市重点中学2024届数学九上期末监测模拟试题含解析_第4页
宝鸡市重点中学2024届数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宝鸡市重点中学2024届数学九上期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程()A. B.C. D.2.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽次也可能没有抽到一等奖C.抽次奖必有一次抽到一等奖D.抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖3.如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()A. B.C.或 D.或4.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定5.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86° B.94° C.107° D.137°6.如图,已知梯形ABCO的底边AO在轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A.等于2 B.等于 C.等于 D.无法确定7.小明、小亮、小梅、小花四人共同探究函数的值的情况,他们作了如下分工:小明负责找函数值为1时的值,小亮负责找函数值为0时的值,小梅负责找最小值,小花负责找最大值.几分钟后,各自通报探究的结论,其中错误的是()A.小明认为只有当时,函数值为1;B.小亮认为找不到实数,使函数值为0;C.小花发现当取大于2的实数时,函数值随的增大而增大,因此认为没有最大值;D.小梅发现函数值随的变化而变化,因此认为没有最小值8.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.9.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.010.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180° D.经过有交通信号灯的路口,遇到红灯11.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)之间的关系为s=8t+2t2,若滑到坡底的时间为4s,则此人下降的高度为()A.16m B.32m C.32m D.64m12.下列二次根式中,是最简二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).15.把抛物线向上平移2个单位,所得的抛物线的解析式是__________.16.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.17.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.18.如图所示,在宽为,长为的矩形耕地上,修筑同样宽的三条路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为,道路的宽为_______三、解答题(共78分)19.(8分)如图,于点,为等腰直角三角形,,当绕点旋转时,记.(1)过点作交射线于点,作射线交射线于点.①依题意补全图形,求的度数;②当时,求的长.(2)若上存在一点,且,作射线交射线于点,直接写出长度的最大值.20.(8分)如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若AE=5,AC=4,求BE的长.21.(8分)作图题:⊙O上有三个点A,B,C,∠BAC=70°,请画出要求的角,并标注.(1)画一个140°的圆心角;(2)画一个110°的圆周角;(3)画一个20°的圆周角.22.(10分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=1.23.(10分)(1)解方程:;(2)图①②均为7×6的正方形网络,点A,B,C在格点上;(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可);(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可).24.(10分)已知关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.25.(12分)元旦游园活动中,小文,小美,小红三位同学正在搬各自的椅子准备进行“抢凳子”游戏,看见李老师来了,小文立即邀请李老师参加,游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏.(1)下列事件是必然事件的是.A.李老师被淘汰B.小文抢坐到自己带来的椅子C.小红抢坐到小亮带来的椅子D.有两位同学可以进入下一轮游戏(2)如果李老师没有抢坐到任何一张椅子,三位同学都抢坐到了椅子但都没有抢坐到自己带来的椅子(记为事件),求出事件的概率,请用树状图法或列表法加以说明.26.如图,抛物线与轴交于点和,与轴交于点顶点为.求抛物线的解析式;求的度数;若点是线段上一个动点,过作轴交抛物线于点,交轴于点,设点的横坐标为.①求线段的最大值;②若是等腰三角形,直接写出的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意,找出等量关系列出方程,即可得到答案.【题目详解】解:根据题意,设此款理财产品每期的平均收益率为x,则;故选择:B.【题目点拨】本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程.2、B【解题分析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【题目详解】A.“抽到一等奖的概率为”,抽一次也可能抽到一等奖,故错误;B.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故正确;C.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故错误;D.“抽到一等奖的概率为”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【题目点拨】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.3、D【解题分析】显然当y1>y2时,正比例函数的图象在反比例函数图象的上方,结合图形可直接得出结论.【题目详解】∵正比例函数y1=k1x的图象与反比例函数的图象交于A(-1,-2),B(1,2)点,

∴当y1>y2时,自变量x的取值范围是-1<x<0或x>1.

故选:D.【题目点拨】本题考查了反比例函数与一次函数的交点问题,数形结合的思想是解题的关键.4、B【解题分析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【题目详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【题目点拨】本题考查平面上的点距离圆心的位置关系的问题.5、D【题目详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【题目点拨】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).6、B【解题分析】如图分别过D作DE⊥Y轴于E,过C作CF⊥Y轴于F,则△ODE∽△OBF,∵OD:DB=1:2∴相似比=1:3∴面积比=OD:DB=1:9即又∴∴解得K=故选B7、D【分析】根据二次函数的最值及图象上点的坐标特点回答即可.【题目详解】因为该抛物线的顶点是,所以正确;根据二次函数的顶点坐标,知它的最小值是1,所以正确;根据图象,知对称轴的右侧,即时,y随x的增大而增大,所以正确;因为二次项系数1>0,有最小值,所以错误;故选:D.【题目点拨】本题主要考查了二次函数图象与最值问题,准确分析是解题的关键.8、C【解题分析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【题目详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【题目点拨】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.9、A【解题分析】根据一元二次方程一次项系数的定义即可得出答案.【题目详解】由一元二次方程一次项系数的定义可知一次项系数为﹣1,故选:A.【题目点拨】本题考查的是一元二次方程的基础知识,比较简单,需要熟练掌握.10、C【解题分析】事先能肯定它一定会发生的事件称为必然事件,根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】解:A、购买一张彩票,中奖,是随机事件,故A不符合题意;

B、射击运动员射击一次,命中靶心,是随机事件,故B不符合题意;

C、任意画一个三角形,其内角和是180°,是必然事件,故C符合题意;

D、经过有交通信号灯的路口,遇到红灯,是随机事件,故D不符合题意;

故选:C.【题目点拨】本题考查了随机事件、不可能事件,随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.11、B【分析】根据时间,算出斜坡的长度,再根据坡比和三角函数的关系,算出人的下降高度即可.【题目详解】设斜坡的坡角为α,当t=4时,s=8×4+2×42=64,∵斜坡的坡比1:,∴tanα=,∴α=30°,∴此人下降的高度=×64=32,故选:B.【题目点拨】本题考查坡比和三角函数中正切的关系,属基础题.12、B【分析】根据最简二次根式概念即可解题.【题目详解】解:A.=,错误,B.是最简二次根式,正确,C.=3错误,D.=,错误,故选B.【题目点拨】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.二、填空题(每题4分,共24分)13、1【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【题目详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案为1.【题目点拨】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.14、1.2【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【题目详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【题目点拨】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15、【分析】根据题意直接运用平移规律“左加右减,上加下减”,在原式上加2即可得新函数解析式即可.【题目详解】解:∵向上平移2个单位长度,∴所得的抛物线的解析式为.故答案为.【题目点拨】本题主要考查二次函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16、3n+1.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【题目详解】解:由图可得,

图①中棋子的个数为:3+1=5,

图②中棋子的个数为:5+3=8,

图③中棋子的个数为:7+4=11,

……

则第n个“T”字形需要的棋子个数为:(1n+1)+(n+1)=3n+1,

故答案为3n+1.【题目点拨】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.17、m≤1【分析】利用判别式的意义得到,然后解不等式即可.【题目详解】解:根据题意得,

解得.

故答案为:.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.18、1【分析】设道路宽为x米,根据耕地的面积-道路的面积=试验田的面积,即可得出关于x的一元二次方程,解之即可得出结论.【题目详解】解:设道路宽为x米,

根据耕地的面积-道路的面积=试验田的面积得:,

解得:x1=1,x2=1.

∵1>20,

∴x=1舍去.

答:道路宽为1米.【题目点拨】本题考查了一元二次方程的应用,根据耕地的面积-道路的面积=试验田的面积,列出关于x的一元二次方程是解题的关键.三、解答题(共78分)19、(1)①见解析,45°②7;(2)见解析,【分析】(1)①作于点H,交的延长线于点,证明∆AHO≌∆AGB,即可求得∠ODC的度数;②延长交于点,利用条件可求得AK、OK的长度,于是可求OD的长;(2)分析可知,点B在以O为圆心,OB为半径的圆上运动(个圆),所以当PB是圆O的切线时,PQ的值最大,据此可解.【题目详解】解:(1)①补全图形如图所示,过点作于点H,交的延长线于点,∵,,,∴∠AGB=∠AHO=∠C=,∴∠GAH=,∴∠OAH+∠HAB=∠GAB+∠HAB=,∴∠OAH=∠GAB,四边形为矩形,∵为等腰直角三角形,∴OA=AB,∴∆AHO≌∆AGB,∴AH=AG,∴四边形为正方形,∴∠OCD=45°,∴∠ODC=45°;②延长交于点,∵,OA=5,∴AK=4,∴OK=3,∵∠ODC=45°,∴DK=AK=4∴;(2)如图,∵绕点旋转,∴点B在以O为圆心,OB为半径的圆上运动(个圆),∴当PB是圆O的切线时,PQ的值最大,∵∴∴∠OPB=45°,∴OQ=OP=10,∴.∴长度的最大值是.【题目点拨】本题考查了与旋转有关的计算及圆的性质,作辅助线构造全等三角形、分析出点的运动轨迹是解题关键.20、(1)证明见解析;(2).【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的判定定理得到OD∥AC,求得∠ODE=∠F,根据等腰三角形的性质得到∠OED=∠ODE,等量代换得到∠OED=∠F,于是得到结论;(2)根据相似三角形的判定和性质即可得到结论.【题目详解】证明:(1)连接OD,∵BC切⊙O于点D,∴OD⊥BC,∴∠ODC=90°,又∵∠ACB=90°,∴OD∥AC,∴∠ODE=∠F,∵OE=OD,∴∠OED=∠ODE,∴∠OED=∠F,∴AE=AF;(2)∵OD∥AC∴△BOD∽△BAC,∴,∵AE=5,AC=4,即,∴BE=.【题目点拨】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.21、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据∠BAC=70°,画一个140°的圆心角,与∠BAC同弧即可;(2)在劣弧BC上任意取一点P画一个∠BPC即可得110°的圆周角;(3)过点C画一条直径CD,连接AD即可画一个20°的圆周角.【题目详解】(1)如图1所示:∠BOC=2∠BAC=140°∴∠BOC即为140°的圆心角;(2)如图2所示:∠BPC=180°-∠BAC=110°,∴∠BPC即为110°的圆周角;(3)连接CO并延长交圆于点D,连接AD,∵∠DAC=90°,∴∠BAD=90°-∠BAC=20°∴则∠BAD即为20°的圆周角.【题目点拨】此题主要考查圆的基本性质,解题的关键是熟知圆周角定理的性质.22、(1)x1=−3,x2=(2)【分析】(1)利用因式分解法解方程即可;(2)利用公式法解方程即可.【题目详解】(1)3x(x+3)=2(x+3)3x(x+3)-2(x+3)=1(x+3)(3x-2)=13x-2=1或x+3=1∴x1=,x2=-3;(2)2x2-4x-3=1a=2,b=-4,c=-3,△=16+24=41>1,,∴x1=1+,x2=1-.【题目点拨】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.23、(1)x=4.5;(2)(a)见解析;(b)见解析【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【题目详解】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;经检验,x=4.5是原方程的解;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为中心对称图形;.【题目点拨】此题主要考查分式方程及方格的作图,解题的关键是熟知分式方程的解法及轴对称图形与中心对称图形的特点.24、(1)k<2且k≠0;(2)x1=2+,x2=2﹣.【解题分析】(1)利用一元二次方程的定义和判别式的意义得到k≠0且△=42﹣4k•2>0,然后求出两不等式的公共部分即可;(2)先确定k的最大整数值得到方程x2﹣4x+2=0,然后利用因式分解法解方程即可.【题目详解】解:(1)由题意得,b2﹣4ac>0即42﹣4k•2>0k<2,又∵一元二次方程k≠0∴k<2且k≠0;(2)∵k<2且k取最大整数∴k=1,当k=1时,x2﹣4x+2=0解得,x1=2+,x2=2﹣.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了一元二次方程的定义.25、(1)D;(2)图见解析,【分析】(1)根据随机事件、必然事件和不可能事件的定义求解可得;(2)根据题意画出树状图列出所有等可能结果,再根据概率公式求解可得.【题目详解】解:(1)、王老师被淘汰是随机事件;、小明抢坐到自己带来的椅子是随机事件;、小红抢坐到小亮带来的椅子是随机事件;、共有3张椅子,四人中只有1位老师,所以一定有2位同学能进入下一轮游戏;故是必然事件.故选:;(2)解:设小文,小美,小红三位同学带来的椅子依

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论