广西壮族自治区南宁市马山县2024届数学九年级第一学期期末检测试题含解析_第1页
广西壮族自治区南宁市马山县2024届数学九年级第一学期期末检测试题含解析_第2页
广西壮族自治区南宁市马山县2024届数学九年级第一学期期末检测试题含解析_第3页
广西壮族自治区南宁市马山县2024届数学九年级第一学期期末检测试题含解析_第4页
广西壮族自治区南宁市马山县2024届数学九年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区南宁市马山县2024届数学九年级第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,点P在△ABC的边AC上,下列条件中不能判断△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.CB2=CP•CA2.抛物线y=4x2﹣3的顶点坐标是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)3.扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.4.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步5.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C. D.6.在平面直角坐标系内,将抛物线先向右平移个单位,再向下平移个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是()A. B. C. D.7.在Rt△ABC中,∠C=90°,若,则∠B的度数是()A.30° B.45° C.60° D.75°8.如图,已知直线,直线、与、、分别交于点、、和、、,,,,()A.7 B.7.5 C.8 D.4.59.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.10.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.如图,点、、在上,若,,则________.12.如图,是的切线,为切点,连接.若,则=__________.13.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.14.如图,把直角三角形的斜边放在定直线上,按顺时针方向在上转动两次,使它转到的位置.设,,则顶点运动到点的位置时,点经过的路线长为_________.15.方程2x2﹣6=0的解是_____.16.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.17.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=____.18.如图,已知等边△ABC的边长为4,P是AB边上的一个动点,连接CP,过点P作∠EPC=60°,交AC于点E,以PE为边作等边△EPD,顶点D在线段PC上,O是△EPD的外心,当点P从点A运动到点B的过程中,点O也随之运动,则点O经过的路径长为_____.三、解答题(共66分)19.(10分)如图,在中,对角线AC与BD相交于点O,,,.求证:四边形ABCD是菱形.20.(6分)计算:2cos30°+sin45°﹣tan260°.21.(6分)如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP=5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求A、B两观景台之间的距离;(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离.(结果保留根号)22.(8分)某商场经营一种新上市的文具,进价为元/件,试营销阶段发现:当销售单价为元/件时,每天的销售量是件;销售单价每上涨一元,每天的销售量就减少件,(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?23.(8分)已知有一个二次函数由的图像与x轴的交点为(-2,0),(4,0),形状与二次函数相同,且的图像顶点在函数的图像上(a,b为常数),则请用含有a的代数式表示b.24.(8分)某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.25.(10分)如图,在△ABC中,BC=12,tanA=,∠B=30°,求AC的长和△ABC的面积.26.(10分)综合与实践—探究正方形旋转中的数学问题问题情境:已知正方形中,点在边上,且.将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,当点落在正方形的对角线上时,设线段与交于点.求证:四边形是矩形;(2)“善学”小组提出问题:如图2,当线段经过点时,猜想线段与满足的数量关系,并说明理由;深入探究:(3)请从下面,两题中任选一题作答.我选择题.A.在图2中连接和,请直接写出的值.B.“好问”小组提出问题:如图3,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请在图3中补全图形,并直接写出的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】观察图形可得,与已经有一组角∠重合,根据三角形相似的判定定理,可以再找另一组对应角相等,或者∠的两条边对应成比例.注意答案中的、两项需要按照比例的基本性质转化为比例式再确定.【题目详解】解:项,∠=∠,可以判定;项,∠=∠,可以判定;项,,,可以判定;项,,,不能判定.【题目点拨】本题主要考查了相似三角形的判定定理,结合图形,按照定理找到条件是解答关键.2、B【分析】根据抛物线的顶点坐标为(0,b),可以直接写出该抛物线的顶点坐标,【题目详解】解:抛物线,该抛物线的顶点坐标为,故选:B.【题目点拨】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3、D【分析】根据空白区域的面积矩形空地的面积可得.【题目详解】设花带的宽度为,则可列方程为,故选D.【题目点拨】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.4、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【题目详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【题目点拨】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.5、C【解题分析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.故选C.考点:动点问题的函数图象.6、B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【题目详解】抛物线的顶点坐标为(0,−1),∵向右平移个单位,再向下平移个单位,∴平移后的抛物线的顶点坐标为(2,−4).故选B.【题目点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.7、C【分析】根据特殊角的函数值可得∠A度数,进一步利用两个锐角互余求得∠B度数.【题目详解】解:∵,

∴∠A=30°,∵∠C=90°,

∴∠B=90°-∠A=60°故选:C.【题目点拨】此题主要考查了特殊角的函数值,以及直角三角形两个锐角互余,熟练掌握特殊角函数值是解题的关键.8、D【分析】根据平行线分线段成比例定理,列出比例式解答即可.【题目详解】∵∴即:故选:D【题目点拨】本题考查的是平行线分线段成比例定理,掌握定理的内容并能正确的列出比例式是关键.9、A【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【题目详解】解:A、是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:A.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【解题分析】根据黄金分割的概念和黄金比值进行解答即可得.【题目详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【题目点拨】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.二、填空题(每小题3分,共24分)11、【分析】连接OB,先根据OA=OB计算出,再根据计算出,进而计算出,最后根据OB=OC得出即得.【题目详解】解:连接OB,如下图:∴∴,∵∴∴故答案为:【题目点拨】本题考查了圆的性质及等腰三角形的性质,解题关键是熟知同圆的半径相等,同弧所对的圆周角是圆心角的一半.12、65°【分析】根据切线长定理即可得出AB=AC,然后根据等边对等角和三角形的内角和定理即可求出结论.【题目详解】解:∵是的切线,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案为:65°.【题目点拨】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键.13、3000(1+x)2=1【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【题目详解】解:设增长率为x,由题意得:

3000(1+x)2=1,

故答案为:3000(1+x)2=1.【题目点拨】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.14、【分析】根据题意得到直角三角形在直线上转动两次点A分别绕点B旋转120°和绕C″旋转90°,将两条弧长求出来加在一起即可.【题目详解】解:在Rt△ABC中,∵BC=1,,∴AB=2,∠CBA=60°,∴弧AA′=;弧A′A′′=;∴点A经过的路线的长是;故答案为:.【题目点拨】本题考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度.15、x1=,x2=﹣【解题分析】此题通过移项,然后利用直接开平方法解方程即可.【题目详解】方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣【题目点拨】此题主要考查了一元二次方程的解法—直接开平方法,比较简单.16、.【解题分析】直接利用概率公式求解可得.【题目详解】在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:.【题目点拨】本题考查了概率公式,关键是掌握随机事件的概率事件可能出现的结果数÷所有可能出现的结果数.17、4【分析】由三角形的重心的概念和性质,即可得到答案.【题目详解】解:如图,∵AD,BE是△ABC的中线,且交点为点G,∴点G是△ABC的重心,∴;故答案为:4.【题目点拨】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.18、【分析】根据等边三角形的外心性质,根据特殊角的三角函数即可求解.【题目详解】解:如图,作BG⊥AC、CF⊥AB于点G、F,交于点I,则点I是等边三角形ABC的外心,∵等边三角形ABC的边长为4,∴AF=BF=2∠IAF=30°∴AI=∵点P是AB边上的一个动点,O是等边三角形△EPD的外心,∴当点P从点A运动到点B的过程中,点O也随之运动,点O的经过的路径长是AI的长,∴点O的经过的路径长是.故答案为:.【题目点拨】本题考查等边三角形的外心性质,关键在于熟悉性质,结合图形计算.三、解答题(共66分)19、见解析【分析】根据平行四边形的性质得到AO和BO,再根据AB,利用勾股定理的逆定理得到∠AOB=90°,从而判定菱形.【题目详解】解:∵四边形ABCD是平行四边形,AC=16,BD=12,∴AO=8,BO=6,∵AB=10,∴AO2+BO2=AB2,∴∠AOB=90°,即AC⊥BD,∴平行四边形ABCD是菱形.【题目点拨】本题考查了菱形的判定,勾股定理的逆定理,解题的关键是证明∠AOB=90°.20、【分析】将特殊角的三角函数值代入计算即可求出值.【题目详解】解:【题目点拨】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握记住特殊角的三角函数值和实数运算法则是解本题的关键.21、(1)A、B两观景台之间的距离为=(5+5)km;(2)观测站B到射线AP的最短距离为()km.【分析】(1)过点P作PD⊥AB于点D,先解Rt△PBD,得到BD和PD的长,再解Rt△PAD,得到AD和AP的长,然后根据BD+AD=AB,即可求解;

(2)过点B作BF⊥AC于点F,解直角三角形即可得到结论.【题目详解】解:(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=BP=5km.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=5km,PA=1.∴AB=BD+AD=(5+5)km;答:A、B两观景台之间的距离为=(5+5)km;(2)如图,过点B作BF⊥AC于点F,则∠BAP=30°,∵AB=(5+5),∴BF=AB=()km.答:观测站B到射线AP的最短距离为()km.【题目点拨】本题考查了解直角三角形的应用-方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.22、(1)w=-10x2+700x-10000;(2)35元【分析】(1)利用每件利润×销量=总利润,进而得出w与x的函数关系式;

(2)利用配方法求出二次函数最值进而得出答案.【题目详解】解:(1)由题意可得:w=(x-20)[250-10(x-25)]

=-10(x-20)(x-50)

=-10x2+700x-10000;

(2)∵w=-10x2+700x-10000=-10(x-35)2+2250,

∴当x=35时,w取到最大值2250,

即销售单价为35元时,每天销售利润最大,最大利润为2250元.【题目点拨】此题主要考查了二次函数的应用,根据销量与售价之间的关系得出函数关系式是解题关键.23、或【解题分析】根据图象与x轴两交点确定对称轴,再根据图象顶点在函数的图像上可得顶点坐标,设顶点式求抛物线的解析式.【题目详解】解:∵y1图象与x轴的交点坐标为(-2,0),(4,0),可得图象对称轴为直线x=1,∵y1图象顶点在函数的图象上,∴当x=1时,y=2+b,∴y1图象顶点坐标为(1,2+b)∵y1图象与形状相同,∴设y1=a(x-1)2+2+b,或y1=-a(x-1)2+2+b,将(-2,0)代入得,0=9a+2+b,或0=-9a+2+b,∴或【题目点拨】本题考查二次函数图象的特征,确定顶点坐标后设顶点式求解析式是解答此题的重要思路.24、(1)60;(2)该农场在第三、第四季度产值的平均下降百分率为【分析】(1)根据题意,第二季度的产值=第一季度的产值×(1+20%),把数代入求解即可;

(2)本题可设该农场第三、四季度的产值的平均下降的百分率为x,则第三季度的产值为60(1-x)万元,第四季度的产值为60(1-x)2万元,由此可列出方程,进而求解.【题目详解】解:(1)第二季度的产值为:(万元);(2)设该农场在第三、第四季度产值的平均下降的百分率为,根据题意得:该农场第四季度的产值为(万元),列方程,得:,即,解得:(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为.【题目点拨】此类题目旨在考查下降率,要注意下降的基础,另外还要注意解的合理性,从而确定取舍.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25、10,24+18【分析】作CD⊥AB于D,根据直角三角形的性质求出CD,根据余弦的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论