2022-2023学年河北省“五个一”名校联盟高二年级下册学期期末联考数学试题【含答案】_第1页
2022-2023学年河北省“五个一”名校联盟高二年级下册学期期末联考数学试题【含答案】_第2页
2022-2023学年河北省“五个一”名校联盟高二年级下册学期期末联考数学试题【含答案】_第3页
2022-2023学年河北省“五个一”名校联盟高二年级下册学期期末联考数学试题【含答案】_第4页
2022-2023学年河北省“五个一”名校联盟高二年级下册学期期末联考数学试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河北省“五个一”名校联盟高二下学期期末联考数学试题一、单选题1.设集合,,则下列结论正确的是(

)A. B. C. D.【答案】B【分析】分别化简两个集合,从而即可作出判断.【详解】∵,,∴,,∴.故选:B.2.已知,,,则与夹角的余弦值为(

)A.-1 B. C.0 D.1【答案】A【分析】先利用转化法求得,再利用向量的夹角公式即可得解.【详解】因为,,,所以,则,所以.故选:A.3.已知双曲线与双曲线,则两双曲线的(

)A.实轴长相等 B.虚轴长相等 C.离心率相等 D.焦距相等【答案】D【分析】通过的范围,结合曲线,求解焦距,实半轴长,虚半轴长,判断选项即可.【详解】的实半轴的长为5,虚半轴的长为3,实数满足,曲线是双曲线,实半轴的长为,虚半轴的长为,显然两条曲线的实轴的长与虚轴的长不相等,所以A、B均不正确;焦距为:,焦距相等,所以D正确;离心率为:和,不相等,所以C不正确.故选:D.4.已知,且,则下列各式一定成立的是(

)A. B. C. D.【答案】A【分析】根据题意,先判断函数为偶函数,两种情况讨论可得函数在,上为增函数,由此根据单调性与奇偶性分析选项,即可得答案.【详解】根据题意,,其定义域为,有,则为偶函数,设,则有,当时,在区间,上,为增函数,且,在,上也是增函数,故在,上为增函数,当时,在区间,上,为减函数,且,在上是减函数,故在,上为增函数,综合可得:函数在,上为增函数,依次分析选项:对于A,有,A正确;对于B,有,B错误;对于C,有,C错误;对于D,,D错误.故选:A.5.一条长椅上有6个座位,3个人坐.要求3个空位中恰有2个空位相邻,则坐法的种数为(

)A.36 B.48 C.72 D.96【答案】C【分析】分两个相邻空位包括最左端或最右端时和不含最左端或最右端时,两种情况求出坐法后相加即可.【详解】先考虑相邻的2个空位,当两个相邻空位包括最左端或最右端时,有2种情况,与空位相邻的座位需要安排一个人,有3种选择,剩余的3个座位,安排2个人,有种选择,则有种选择,当两个相邻空位不含最左端或最右端时,此时有3种情况,与空位相邻的左右座位需要安排两个人,有种选择,最后一个人有2种选择,则有种选择,综上:坐法的种数共有个.故选:C6.某学校有男生600人,女生400人.为调查该校全体学生每天的运动时间,采用分层抽样的方法获取容量为的样本.经过计算,样本中男生每天运动时间的平均值为80分钟,方差为10;女生每天运动时间的平均值为60分钟,方差为20.结合数据,估计全校学生每天运动时间的方差为(

)A.96 B.110 C.112 D.128【答案】B【分析】根据男、女学生比例,不妨设女、男学生分别为,,则总数为,求得所有样本的平均值,代入方差公式,即可得答案.【详解】由题意,按分层抽样方式抽取样本,且该校女、男学生比例为,不妨设抽取女、男学生分别为,,则总数为,则所有样本平均值为,所以方差为.故选:B.7.过直线上一点向圆O:作两条切线,设两切线所成的最大角为,则(

)A. B. C. D.【答案】C【分析】设是直线的动点,由题意可得是圆心到直线的距离时,两切线所成的角最大,计算可得.【详解】由圆,可得圆心为,半径为,设是直线的动点,自向圆作切线,当长最短时,两切线所成的角最大,即是圆心到直线的距离时,两切线所成的角最大,由点到直线的距离公式可得,,,,.故选:C.8.设是定义在上的奇函数,且满足,.数列满足,,则(

)A.0 B.-1 C.2 D.-2【答案】D【分析】先把裂项后迭代求出,得到;再证明出是以3为周期的周期函数,即可求解.【详解】对于数列满足,且,变形可得:,即,则有:.所以,所以.因为是定义在上的奇函数,所以且.因为,则有:,则有,即是以3为周期的周期函数.所以.故选:D二、多选题9.若,,则下列说法正确的是(

)A.若事件相互独立,则事件也互斥 B.若事件相互独立,则事件不互斥C.若事件互斥,则事件也相互独立 D.若事件互斥,则事件不相互独立【答案】BD【分析】利用互斥事件与独立事件的概率公式,对各选项逐一分析判断即可.【详解】对于AB,若事件相互独立,则,所以事件不互斥,故A错误,B正确;对于CD,若事件互斥,则,又,所以,则事件不相互独立,故C错误,D正确.故选:BD.10.函数由关系式确定,则下列说法正确的是(

)A.函数的零点为1B.函数的定义域和值域均为C.函数的图象是轴对称图形D.若,则在定义域内满足恒成立【答案】ACD【分析】由题意写出分段函数解析式,画出函数图象,结合图象逐个分析判断即可.【详解】因为函数由关系式确定,所以,则的图象如图所示,

由图象可知,函数的零点为1,所以A正确,由图象可知,函数的定义域和值域均为,所以B错误,因为对于,与互换后得到,与原式子相同,所以的图象关于直线对称,所以函数的图象是轴对称图形,所以C正确,由图象可知,的图象恒在直线的上方,所以在定义域内满足恒成立,所以D正确,故选:ACD11.某通信工具在发送、接收信号时都会使用数字0或是1作为代码,且每次只发送一个数字.由于随机因素的干扰,发出的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收成0或1的概率分别为0.94和0.06;发送信号1时,接收成1或0的概率分别为0.96和0.04.假设发送信号0或1的概率是等可能的,则(

)A.已知两次发送的信号均为1,则接收到的信号均为1的概率为B.在单次发送信号中,接收到0的概率为0.49C.在单次发送信号中,能正确接收的概率为0.95D.在发送三次信号后,恰有两次接收到0的概率为【答案】BCD【分析】根据题意结合独立事件概率乘法公式逐项分析判断.【详解】对于选项A:两次发送的信号均为1,接收到的信号均为1的概率为,故A错误;对于选项B:在单次发送信号中,接收到0的概率为,故B正确;对于选项C:在单次发送信号中,能正确接收的概率为,故C正确;对于选项D:由选项B可知:在单次发送信号中,接收到0的概率为,则发送三次信号后,恰有两次接收到0的概率,故D正确;故选:BCD.12.已知为等腰直角三角形,为斜边且长度是.为等边三角形,若二面角为直二面角,则下列说法正确的是(

)A.B.三棱锥的体积为C.三棱锥外接球的表面积为D.半径为的球可以被整体放入以三棱锥为模型做的容器中【答案】ACD【分析】取线段的中点,连接、,证明出平面,利用线面垂直的性质可判断A选项;计算出三棱锥的体积,可判断B选项;分析可知的外心即为三棱锥外接球的球心,计算出三棱锥外接球的表面积,可判断C选项;计算出三棱锥的内切球半径,可判断D选项.【详解】对于A选项,取线段的中点,连接、,设的外心为点,如下图所示:

因为为等腰直角三角形,为斜边,为的中点,所以,,同理可得,,且,因为,、平面,所以,平面,因为平面,所以,,A对;对于B选项,因为,,则二面角的平面角为,且,因为平面平面,平面平面,平面,,所以,平面,,所以,,B错;对于C选项,因为平面平面,平面平面,平面,,所以,平面,因为、平面,所以,,,因为,所以,,即,又因为为的外心,则,故,所以,为三棱锥外接球的球心,因为,且为等边的外心,则,因此,三棱锥外接球的表面积为,C对;对于D选项,因为,,,则,即,取线段的中点,连接,则,且,所以,,所以,,同理可得,又因为,所以,三棱锥的表面积为,设三棱锥的内切球半径为,则,即,所以,,因此,半径为的球可以被整体放入以三棱锥为模型做的容器中,D对.故选:ACD.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.三、填空题13.方程在复数集中的解为.【答案】【分析】先化简方程,然后在复数集范围内解方程即可.【详解】由方程,即,故,所以或,即方程在复数集中的解为或,故答案为:.14..【答案】【分析】利用两角差的正弦公式计算可得.【详解】.故答案为:15.已知函数的图像关于点对称,且在区间上单调,则.【答案】或【分析】根据三角函数的对称性,列出方程求得,结合在区间上单调,求得,进而得到的值.【详解】由函数的图像关于点对称,可得,解得,可得,又因为在区间上单调,可得,即,即,解得,当时,;当时,,故答案为:或.16.如图所示,斜率为的直线交椭圆于M、N两点,交轴、轴分别于Q、P两点,且,则椭圆的离心率为.

【答案】/0.5【分析】数形结合,表示出M、N点的坐标,代入方程,找到的关系,再结合,即可求解椭圆的离心率;【详解】设直线由图可知,,设直线由图可知,,又因为,设在轴上投影长度为,所以代入,解得:,上式除以下式得:,等式两边同时除以,解得:即:又因为,解得,所以椭圆的离心率为,故答案为:;

四、解答题17.已知数列的前n项和为,数列满足,.(1)证明:数列是等差数列;(2)是否存在常数p、q,使得对一切正整数n都有成立?若存在,求出p、q的值;若不存在,说明理由.【答案】(1)证明见解析(2)存在;,【分析】(1)根据求出的通项公式,证明出数列为等差数列;(2)先得到是以8为首项,为公比的等比数列,求出通项公式,结合对数运算列出方程组,求出p、q的值.【详解】(1)证明:因为数列的前n项和为,当时,,所以,当时,,满足,所以数列的通项公式为,,所以,,所以是首项为7,公差为4的等差数列.(2)因为,所以,所以数列是以8为首项,为公比的等比数列,所以;所以,要使对一切正整数n都有成立.即,即,所以,解得,所以则当,时,对一切正整数n都有成立.18.记的内角A、B、C的对边分别为a、b、c,且.(1)求角的大小;(2)设边上的高,求面积的最小值.【答案】(1)(2)【分析】(1)由题意及正弦定理可得的值,再由角的取值范围,可得角的大小;(2)由题意和(1)可得,再由余弦定理可得的最小值,进而求出该三角形的面积最小值.【详解】(1)由正弦定理可知:所以又,所以,所以.因为,所以.(2),所以①而所以,当且仅当时等号成立②由①②两式可知,所以,即面积的最小值为.19.如图,圆锥的高为3,是底面圆的直径,PC,PD为圆锥的母线,四边形是底面圆的内接等腰梯形,且,点在母线上,且.

(1)证明:平面平面;(2)求平面与平面的夹角的余弦值.【答案】(1)证明见解析(2)【分析】(1)先得到平行四边形OADC为菱形,得到,再结合得到线面垂直,证明出面面垂直;(2)建立空间直角坐标系,写出点的坐标,得到平面法向量,得到两平面夹角的余弦值.【详解】(1)由已知可得,且,所以四边形OADC为平行四边形,又因为,所以平行四边形OADC为菱形,所以在圆锥PO中,因为平面ABCD,平面ABCD,所以因为,平面POD,平面POD,所以平面POD.又因为平面AEC,所以平面平面POD.

(2)取CD中点M,易知平面PAB,,以O为原点,OM,OB,OP所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则,,,,因为,所以,所以,所以,,设平面AEC的一个法向量为,因为,所以,令,则,,所以,易知平面EAB即平面yOz,所以平面EAB的一个法向量为,设平面AEC与平面EAB的夹角为,则,所以平面AEC与平面EAB的夹角的余弦值为.

20.已知函数.(1)讨论函数的单调性;(2)若既有极大值又有极小值,且极大值和极小值的和为.解不等式.【答案】(1)答案见解析(2)【分析】(1)对函数求导,然后对参数分类讨论,注意讨论正负以及与的关系。然后根据导数判断函数的单调性;(2)由(1)知,的范围是且,,题目转化为求解,构造函数,然后结合函数的单调性以及特殊值,从而解得不等式的解集;【详解】(1)定义域:,1°时,令,解得;令,解得;所以在上单调递增,在上单调递减;2°时①当时,即时,令,解得或;令,解得;所以在上单调递增,上单调递减,上单调递增;②当时,即时,恒成立,所以在上单调递增;③当时,即时,令,解得或;令,解得;所以在上单调递增,上单调递减,上单调递增.综上所述:当时,在上单调递增,在上单调递减;当时,在上单调递增,上单调递减,上单调递增;当时,在上单调递增;当时,在上单调递增,上单调递减,上单调递增.(2)由(1)知:且,且即:解不等式;(且)等价于解不等式:令,,所以在单调递增,且,所以,即不等式的解集为.21.已知为抛物线上一点,,为的中点,设的轨迹为曲线.(1)求曲线的方程;(2)过点作直线交曲线E于点M、N,点为直线l:上一动点.问是否存在点使为正三角形?若存在,求出点坐标;若不存在,请说明理由.【答案】(1)(2)存在;【分析】(1)设,表达出,代入抛物线方程中,求出的轨迹方程;(2)设出直线MN:,联立抛物线方程,根据等边三角形,得到方程,求出,进而得到.【详解】(1)设,则因为点B在抛物线上,即,化简得,所以曲线E的方程为.(2)假设存在点使为正三角形.当MN垂直于y轴时,不符合题意;当MN不垂直于y轴时,设直线MN:,MN的中点为,联立得:,∴,,,∴,∴,,∴,∵为正三角形,∴,即,∴,PK:,令,∴所以存在点使为正三角形.

22.航天事业是国家综合国力的重要标志,带动着一批

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论