版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年中考数学试题分类汇编之九三角形选择题3.(2020北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠5【解析】由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项的∠2>∠3,C选项∠1=∠4+∠5,D选项的∠2>∠5.故选A.4.(2020广州)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE,若∠C=68°,则∠AED=(*).(A)22° (B)68°(C)96° (D)112°【答案】B3.(2020福建)如图,面积为1的等边三角形中,分别是,,的中点,则的面积是()A.1 B. C. D.【答案】D【详解】∵分别是,,的中点,且△ABC是等边三角形,∴△ADF≌△DBE≌△FEC≌△DFE,∴△DEF的面积是.故选D.5.(2020福建)如图,是等腰三角形的顶角平分线,,则等于()A.10 B.5 C.4 D.3【答案】B【详解】∵是等腰三角形的顶角平分线∴CD=BD=5.故选:B.【点睛】本题考查等腰三角形的三线合一,关键在于熟练掌握基础知识.6.(2020陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A. B. C. D.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.11.(2020天津)如图,在中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,延长交于点,则下列结论一定正确的是()A. B. C. D.答案:D16.(2020河北)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4【答案】B【详解】解:根据题意,设三个正方形的边长分别为a、b、c,由勾股定理,得,A、∵1+4=5,则两直角边分别为:1和2,则面积为:;B、∵2+3=5,则两直角边分别为:和,则面积为:;C、∵3+4≠5,则不符合题意;D、∵2+2=4,则两直角边分别为:和,则面积为:;∵,故选:B.7(2020乐山).观察下列各方格图中阴影部分所示的图形(每一小方格的边长为),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A. B. C. D.【答案】A【详解】由方格的特点可知,选项A阴影部分的面积为6,选项B、C、D阴影部分的面积均为5如果能拼成正方形,那么选项A拼接成的正方形的边长为,选项B、C、D拼接成的正方形的边长为观察图形可知,选项B、C、D阴影部分沿方格边线或对角线剪开均可得到如图1所示的5个图形,由此可拼接成如图2所示的边长为的正方形而根据正方形的性质、勾股定理可知,选项A阴影部分沿着方格边线或对角线剪开不能得到边长为的正方形故选:A.7(2020四川绵阳)如图,在四边形ABCD中,,DF//BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1B.2C.3D.4【解析】本题考查角平分线性质和三角形中位线定理。过E作EM⊥BC交DF于N.∵BE平分∠ABC,∠A=∠C=90°,∴EM=AE=3,四边形DCMN是矩形,MN=DC=2.∴EN=1.∵E是HD的中点,∴HG=2EN=2.故选B.9(2020四川绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=().A.16°B.28°C.44°D.45°【解析】延长CD交AB于点F。则∠CFG=∠CDE=72°。∵△ABC是等腰三角形,∠ABC=124°∴∠A=(180°-124°)÷2=28°。∴∠ACD=∠CFG-∠A=72°-28°=44°。故选C.9.(2020无锡)如图,在四边形中,,,,把沿着翻折得到,若,则线段的长度为()A. B. C. D.解:如图∵,,,∴,∴,∵,∴,∴,延长交于,∴,则,,过点作,设,则,,∴,∴在中,,即,解得:,∴.故选B.11.如图,在△ABC中,AC=22,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BEA.6B.3C.23D.解析:依次易得∠ACB=120°,∠ACE=120°,∠CAE=30°,AC=EC,△ABC≌△EBC,BE=BA.延长BC交AE于F,则∠AFC=90°,易得AF=6.答案C.9.(2020新疆生产建设兵团)(5分)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.25 B.5 C.45 D.10解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=12∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=12∵△DFE的面积为1,∴12DE•DF∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=12∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC=AB2故选:A.6.(2020四川南充)(4分)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.a+b2 B.a-b2 C.a﹣b D.b解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.7.(2020江苏连云港)(3分)10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,、、、、、均是正六边形的顶点.则点是下列哪个三角形的外心A. B. C. D.解:三角形的外心到三角形的三个顶点的距离相等,从点出发,确定点分别到,,,,的距离,只有,点是的外心,故选:.11.(2020广西南宁)(3分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸 B.52寸 C.101寸 D.104寸解:过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,则AB=2r,DE=10,OE=CD=1,AE=r﹣1,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.9.(2020广西玉林)(3分)(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∴∠ACD=∠ACB﹣∠BCD=90°﹣55°,=35°,∵CD∥AE,∴∠EAC=∠ACD=35°,∴∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.3.(3分)(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm【解答】解:设第三边长为xcm,根据三角形的三边关系可得:6﹣3<x<6+3,解得:3<x<9,故选:C.9.(3分)(2020•烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A. B. C. D.【解答】解:最小的等腰直角三角形的面积=18×12×42=1(cm2),平行四边形面积为2cm2,中等的等腰直角三角形的面积为2A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.10.(3分)(2020•烟台)如图,点G为△ABC的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为()A.1.7 B.1.8 C.2.2 D.2.4【解答】解:∵点G为△ABC的重心,∴AE=BE,BF=CF,∴EF=12AC=9.(2020四川自贡)(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50° B.40° C.30° D.20°解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=1∴∠ACD=90°﹣70°=20°,故选:D.14.(2020青海)(3分)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55° B.70°,40°或70°,55° C.70°,40° D.55°,55°或70°,40°解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故选:D.7.(3分)(2020•怀化)在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为()A.3 B.32 C.2 选:A.7.(2020浙江宁波)(4分)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.4解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB=A又∵CD为中线,∴CD=12∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=12故选:B.10.(2020浙江宁波)(4分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长 B.△AFH的周长 C.四边形FBGH的周长 D.四边形ADEC的周长【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.填空题14.(2020北京)在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是(写出一个即可)【解析】答案不唯一,根据等腰三角形三线合一的性质可得,要使△ABD≌△ACD,则可以填∠BAD=∠CAD或者BD=CD或AD⊥BC均可.15.(2020北京)如图所示的网格是正方形网格,A,B,C,D是网格交点,则△ABC的面积与△ABD的面积的大小关系为:(填“>”,“=”或“<”)【解析】由网格图可得,∴面积相等,答案为“=”14.(2020广州)如图6,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为*.【答案】(4,3)19.(2020哈尔滨)(3分)在中,,为边上的高,,,则的长为5或7.解:在中,,,,如图1、图2所示:,,故答案为:7或5.11(2020江西).如图,平分,,的延长线交于点,若,则的度数为.【解析】CD=CB,∠ACD=∠ACB,CA=CA,∴△CAD≌△CAB,∴∠B=∠D,设∠ACB=,∠B=,则∠ACD=,∠D=,∠EAC为△ACD的一个外角,∴,在△ABC中有内角和为180°,∴,∴∠BAC=131°,∴∠BAE=∠BAC-∠EAC=82°,故答案为82°17.(2020四川绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为。答案:【解析】解:∵四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,∴∠DAC=∠ABC=60°∠DAC=∠CAB=30°,∴∠ACB=90°。当M在AC上时,M到AC的距离最小。如图:AC=,在RT△AMD中,AM=AD=4×=2.∴CM=AC-AM=-2=.故填:。15.(2020贵阳)如图,中,点在边上,,,垂直于的延长线于点,,,则边的长为_____.【答案】解:如图,延长BD到点G,使DG=BD,连接CG,则CB=CG,在EG上截取EF=EC,连接CF,则∠EFC=∠ECF,∠G=∠CBE,∵EA=EB,∴∠A=∠EBA,∵∠AEB=∠CEF,∴∠EFC=∠A=2∠CBE=2∠G,∵∠EFC=∠G+∠FCG,∴∠G=∠FCG,∴FC=FG,设CE=EF=x,则AE=BE=11-x,∴DE=8-(11-x)=x-3,∴DF=x-(x-3)=3,∵DG=DB=8,∴FG=5,∴CF=5,在Rt△CDF中,根据勾股定理,得,∴.故答案为:.14.(2020贵州黔西南)(3分)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=33,则BD的长度为23.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=12∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=33,∴CD+2CD=33,∴CD=3,∴DB=23故答案为:23.12.(2020湖北黄冈)已知:如图,在中,点在边上,,则_______度.解:∵,∴,∴,∵,∴,∴,故答案为:40.15.(2020湖北黄冈)我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐问水深几何?”(注:丈、尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是_______________尺.解:设这个水池深x尺,
由题意得,x2+52=(x+1)2,
解得:x=12
答:这个水池深12尺.故答案为:12.13.(2020齐齐哈尔)((3分)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)AD=AC(∠D=∠C或∠ABD=∠ABC等)故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).15.(2020齐齐哈尔)((3分)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是10或11.解:①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.17.(2020上海)(4分)如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,联结AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为332【解答】解:如图,过点E作EH⊥BC于H.∵BC=7,CD=3,∴BD=BC﹣CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°,∵DE=DC=3,∴EH=DE•sin60°=3∴E到直线BD的距离为33故答案为3315.(2020辽宁抚顺)(3分)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为2.解:∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN=BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,∴△MNE≌△DCE(AAS),∴CD=MN=2.故答案为:2.13.(2020黑龙江龙东)(3分)如图,和中,,在不添加任何辅助线的情况下,请你添加一个条件或或等),使和全等.【解答】解:添加的条件是:,理由是:在和中,,故答案为:.12.(2020湖南岳阳)(4分)(2020•岳阳)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=70°.【解答】解:在Rt△ABC中,∠A=20°,则∠B=70°,∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠BCD=∠B=70°,故答案为70.13.(3分)(2020•徐州)如图,在Rt△ABC中,∠ABC=90°,D、E、F分别为AB、BC、CA的中点,若BF=5,则DE=5.【解答】解:如图,∵在Rt△ABC中,∠ABC=90°,F为CA的中点,BF=5,∴AC=2BF=10.又∵D、E分别为AB、BC的中点,∴DE是Rt△ABC的中位线,∴DE=12故答案是:5.(2020东莞)若等边的边长为2,则该三角形的高为_________.答案:7.(2020青海)(2分)已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为等腰三角形.解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b=2,c=3,∵a为方程|a﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,故答案为:等腰.14.(2020山东滨州)(5分)在等腰中,,,则的大小为.14.(3分)(2020•怀化)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=130°.证明:∵在△ADC和△ABC中AD=ABAC=AC∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,16.(4分)(2020•株洲)如图所示,点D、E分别是△ABC的边AB、AC的中点,连接BE,过点C作CF∥BE,交DE的延长线于点F,若EF=3,则DE的长为32【解答】解:∵D、E分别是△ABC的边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=1∵CF∥BE,∴四边形BCFE为平行四边形,∴BC=EF=3,∴DE=1故答案为:32解答题27.(2020北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设,求EF的长(用含的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【解析】(1)∵D是AB的中点,E是线段AC的中点,∴DE为△ABC的中位线∴DE∥BC,∵∠C=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°∴四边形DECF为矩形,∴DE=CF=,∴BF=CF,∴BF=CF,∴DF=CE=AC,∴.(2)过点B作AC的平行线交ED的延长线于点G,连接FG.∵BG∥AC,∴∠EAD=∠GBD,∠DEA=∠DGB∵D是AB的中点,∴AD=BD,∴△EAD≌△GBD(AAS)∴ED=GD,AE=BG.∵DF⊥DE,∴DF是线段EG的垂直平分线∴EF=FG∵∠C=90°,BG∥AC,∴∠GBF=90°,在Rt△BGF中,,∴18、(2020广州)(本小题满分9分)如图8,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【详解过程】在△ACD中,∵∠DAC=25°,∠D=80°,∴∠DCA=180°-∠DAC-∠D=180°-25°-80°=75°。在△ACB和△ACD中∴△ACB≌△ACD(SAS)∴∠BCA=∠DCA=75°。24.(2020哈尔滨)(8分)已知:在中,,点、点在边上,,连接、.(1)如图1,求证:;(2)如图2,当时,过点作交的延长线于点,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于.【解答】(1)证明:,,在和中,,,;(2),,,,,,,,,满足条件的等腰三角形有:,,,.25.(2020苏州)问题1:如图①,在四边形中,,是上一点,,.求证:.问题2:如图②,在四边形中,,是上一点,,.求的值.【答案】问题1:见解析;问题2:【详解】问题1:证明:∵,∴.∵,∴.∴.在和中,,∴.∴,,∴.问题2:如图,分别过点、作的垂线,垂足为、.由(1)可知,在和中,,∴,,,.∴,.∴.19.(2020南京)(8分)如图,点在上,点在上,,,求证:.证明:在与中,...18.已知:如图,在中,点是的中点,连接并延长,交的延长线于点,求证:.证明:∵点是的中点,.在中,,.在和中,,.21.(2020无锡)如图,已知,,.求证:(1);(2).证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE-EF=CF-EF,即BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.26.(2020重庆A卷)如图,在中,,,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:;(2)如图2所示,在点D运动的过程中,当时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使的值最小.当的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.【答案】(1)证明见解析;(2);(3)解:(1)证明如下:∵,∴,∵,,∴在和中,∴,∴,∴,在中,F为DE中点(同时),,∴,即为等腰直角三角形,∴,∵,∴;(2)由(1)得,,,∴,在中,,∵F为DE中点,∴,在四边形ADCE中,有,,∴点A,D,C,E四点共圆,∵F为DE中点,∴F为圆心,则,在中,∵,∴F为CG中点,即,∴,即;(3)设点P存在,由费马定理可得,∴,设PD,∴,又,∴,又∴.26.(2020重庆B卷)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=23.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.提示:(1)易得∠CGE=90°,NG=12CE,CD=4,DE=23.答案:NG=(2)∠DNM的为定值120°.连CF,BE,BE交AC于H,DN交AC于G,如图.易得:BE∥DN,MN∥CF,△ABE≌△ACF.因此∠DGC=∠BHC,∠ENM=∠ECF,∠ABE=∠ACF又∠BHC=∠ABE+∠BAH=∠ABE+60°∴∠DGC=∠ABE+60°=∠ACF+60°又∠DGC=∠DNC+∠GCN=∠DNC+∠ACF-∠ECF∴∠DNC=60°+∠ECF=60°+∠ENM∴∠DGE=180°-∠DNC=120°-∠ENM∴∠DNM=∠DNE+∠ENM=120°.(3)△AND的面积为7如图,取AC中点P,因为BP+PN≥BN,所以当B、P、N在一直线上,BN最大.易得BN=BP+PN=BP+12AE=设BP与AD交于O,NQ⊥AD于Q,如图.易得BO=23BP=833,ON=733,BD=4,△ONQ∽△OBD∴△AND的面积为:12×AD×NQ=718.(2020四川南充)(8分)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∴△ABC≌△CDE(ASA),∴AB=CD.25.(2020辽宁抚顺)(12分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=时,请直接写出的值.解:(1)连接AC,如图①所示:∵α=90°,∠ABC=α,∠AEC=α,∴∠ABC=∠AEC=90°,∴A、B、E、C四点共圆,∴∠BCE=∠BAE,∠CBE=∠CAE,∵∠CAB=∠CAE+∠BAE,∴∠BCE+∠CBE=∠CAB,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∴∠CAB=45°,∴∠BCE+∠CBE=45°,∴∠BEC=180°﹣(∠BCE+∠CBE)=180°﹣45°=135°,∴∠AEB=∠BEC﹣∠AEC=135°﹣90°=45°;(2)AE=BE+CE,理由如下:在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:∵∠ABC=∠AEC,∠ADB=∠CDE,∴180°﹣∠ABC﹣∠ADB=180°﹣∠AEC﹣∠CDE,∴∠A=∠C,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE,BF=BE,∴∠ABF+∠FBD=∠CBE+∠FBD,∴∠ABD=∠FBE,∵∠ABC=120°,∴∠FBE=120°,∵BF=BE,∴∠BFE=∠BEF=×(180°﹣∠FBE)=×(180°﹣120°)=30°,∵BH⊥EF,∴∠BHE=90°,FH=EH,在Rt△BHE中,BH=BE,FH=EH=BH=BE,∴EF=2EH=2×BE=BE,∵AE=EF+AF,AF=CE,∴AE=BE+CE;(3)分两种情况:①当点D在线段CB上时,在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:由(2)得:FH=EH=BE,∵tan∠DAB==,∴AH=3BH=BE,∴CE=AF=AH﹣FH=BE﹣BE=BE,∴=;②当点D在线段CB的延长线上时,在射线AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图③所示:同①得:FH=EH=BE,AH=3BH=BE,∴CE=AF=AH+FH=BE+BE=BE,∴=;综上所述,当α=120°,tan∠DAB=时,的值为或.18.(2020吉林)(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).26.(2020黑龙江龙东)(8分)如图①,在中,,,点、分别在、边上,,连接、、,点、、分别是、、的中点,连接、、.(1)与的数量关系是.(2)将绕点逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.【解答】解:(1)如图①中,,,,,,,,,,,,,,,,,,的等腰直角三角形,,,,故答案为.(2)如图②中,结论仍然成立.理由:连接,延长交于点.和是等腰直角三角形,,,,,,,,,,,、、分别为、、的中点,,,,,,,.26.(2020黑龙江牡丹江)(8分)在等腰中,,点,在射线上,,过点作,交射线于点.请解答下列问题:(1)当点在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点.(2)当点在线段的延长线上,是的角平分线时,如图②;当点在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则18或6.【解答】解:(1)如图①,延长,交于点.,,,,,,,又,,,又,,,,即;(2)当点在线段的延长线上,是的角平分线时,,如图②,延长,交于点.由①同理可证,,由①证明过程同理可得出,,;当点在线段的延长线上,是的外角平分线时,.如图③,延长交于点,由上述证明过程易得,,,又,,,,,;(3)或6,当时,图①中,由(1)得:,,;图②中,由(2)得:,,;图③中,小于,故不存在.故答案为18或6.26.(10分)(2020•常德)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴BMBC即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=12PC=②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.23.(8分)(2020•徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.【解答】解:(1)∵AC⊥BC,DC⊥EC,∴∠ACB=∠DCE=90°,∴∠ACE=∠BCD,在△ACE和△BCD中,AC=BC∠ACE=∠BCDCE=CD∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵∠ACB=90°,∴∠A+∠ANC=90°,∵△ACE≌△BCD,∴∠A=∠B,∵∠ANC=∠BNF,∴∠B+∠BNF=∠A+∠ANC=90°,∴∠AFD=∠B+∠BNF=90°.19.(9分)(2020•荆门)如图,△ABC中,AB=AC,∠B的平分线交AC于D,AE∥BC交BD的延长线于点E,AF⊥AB交BE于点F.(1)若∠BAC=40°,求∠AFE的度数;(2)若AD=DC=2,求AF的长.【解答】解:(1)∵AB=AC,∠BAC=40°,∴∠ABC=12(180°﹣40°)∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC∵AF⊥AB,∴∠BAF=90°,∴∠AFE=∠ABD+∠BAF=35°+90°=125°;(2)∵AE∥BC,∴∠E=∠DBC,在△ADE和△CDB中,∠E=∠DBC∠ADE=∠CDB∴△ADE≌△CDB(AAS),∴AE=BC,∵∠E=∠DBC,∠ABD=∠DBC,∴∠E=∠ABD,∴AB=AE,∴AB=BC,∵AB=AC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABF=30°,∵AD=DC=2,∴AB=AC=4,在Rt△ABF中,AF=AB•tan∠ABF=4×tan30°=4×324.(12分)(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,DE=FE∠DEH=∠FEC∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,ED=DF∠EDG=∠FDCDG=CD∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.20.(2020山西)(8分)阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30cm,然后分别以D,C为圆心,以50cm与40cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是勾股定理的逆定理;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).解:(1)∵CD=30,DE=50,CE=40,∴CD2+CE2=302+402=502=DE2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理;故答案为:勾股定理的逆定理;(2)由作图方法可知,QP=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC+∠RCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°;(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.27.(2020青海)(10分)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车销售业绩总结
- 纺织行业员工绩效管理
- 医疗行业安全标准落实
- 气象环保行业会计工作的特殊性
- 游戏公司话务员工作总结
- 年度内审工作计划
- 2024酒店会议室租赁合同
- 外装饰吊篮安装施工方案
- 2025版个人住房抵押贷款合同房屋租赁管理范本3篇
- 体育教研组新学期工作计划范文(6篇)
- 2025年包钢(集团)公司招聘笔试参考题库含答案解析
- 2025年沈阳水务集团招聘笔试参考题库含答案解析
- 2025年高三语文八省联考作文题目详解:7个立意、15个标题、5个素材
- 《科学与工程伦理》课件-1港珠澳大桥工程建设中的白海豚保护相关案例分析
- 肘关节镜手术
- 浙江省杭州市钱塘区2023-2024学年四年级上学期数学期末试卷
- 2024年北师大版四年级数学上学期学业水平测试期末测试卷(含答案)
- 天车租赁合同范例
- 多任务并行处理中的计算资源分配
- 第二单元《第8课循环结构-for循环》教学实录 -2023-2024学年浙教版(2020)初中信息技术八年级上册
- 心肺复苏术课件2024新版
评论
0/150
提交评论