![人教版2022-2023新高一初升高数学《分式》专题知识衔接预习过关讲义_第1页](http://file4.renrendoc.com/view/ff64d637adc25e97623116493cf8698c/ff64d637adc25e97623116493cf8698c1.gif)
![人教版2022-2023新高一初升高数学《分式》专题知识衔接预习过关讲义_第2页](http://file4.renrendoc.com/view/ff64d637adc25e97623116493cf8698c/ff64d637adc25e97623116493cf8698c2.gif)
![人教版2022-2023新高一初升高数学《分式》专题知识衔接预习过关讲义_第3页](http://file4.renrendoc.com/view/ff64d637adc25e97623116493cf8698c/ff64d637adc25e97623116493cf8698c3.gif)
![人教版2022-2023新高一初升高数学《分式》专题知识衔接预习过关讲义_第4页](http://file4.renrendoc.com/view/ff64d637adc25e97623116493cf8698c/ff64d637adc25e97623116493cf8698c4.gif)
![人教版2022-2023新高一初升高数学《分式》专题知识衔接预习过关讲义_第5页](http://file4.renrendoc.com/view/ff64d637adc25e97623116493cf8698c/ff64d637adc25e97623116493cf8698c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023新高一初高中数学知识衔接辅导课程衔接点04分式知识点讲解.分式的意义形如A的式子,若B中含有字母,且B≠0,则称A为分式.当M≠0时,分式A具有下列性B B B质:AAXMAA÷M ; B BXM BB÷M■上述性质被称为分式的基本性质..繁分式a像ɪ,C+dm+n+P这样,分子或分母中又含有分式的分式叫做繁分式.2mn+p经典例题解析例1.若2χ±±
x(x+2)解:∙.∙A+JLxx+2=A+-B-,求常数A,B的值.xx+2_A(X+2)+Bx_(A+B)X+2A_5X+4例2.(1)试证:X(x+2)1 _1 1 -
n(n+1) nn+1x(X+2) X(X+2)(其中n是正整数);A+B=5,角牛得A=2,B=32A=4,⑵计算:111 + +•••+ ;
1x22X3 9X101(1)(2)证明:对任意大于1的正整数小nn+1 n(n+1)1 _1 1■- ——— n(n+1) nn+1解:由(1)可知II1^有 + +•••+2X33X41n(n+1)」.n(n+1) 2(其中n是正整数)成立.⑶证明:,「11_(n+1)-n1 1 1 “1、/11 1、_11 9 + +•••+ —(1——)+(———)+•••+(———)—1————1x22X3 9X10 2 23 910 10 101 1 1J1、J1、 / 1、 1 1(3)^E明:■ + +,,,+ -(—)+(———)+•••+(—— )—— 2X33X4 n(n+1) 23 34nn+1 2n+1_-- 1 1 1 1 1又n≥2,且n是正整数,「. H —定为正数,.二ɪ+ɪ+…+—ɪ-<? ■n+1 2X33X4n(n+1) 2例3设e=C,且e>1,2c2-5ac+2a2=0,求e的值.a1解:在2c2-5ac+2a2=0两边同除以22,得2e2—5e+2=0,「.(2e—1)(e—2)=0,「.e=2V1,舍去;或6=2.二6=2.实时训练一、单选题x2_x_2.分式 L的值为0,则X的值为( )X—1A.-1或2 B.2 C.-1 D.—2【答案】B【分析】fX2—X—2=0将该分式化为Lll八,求解即可.[IXI-1≠0【详解】X2-X-2C 二0X-1X2—X22=0IXI-1≠0解得X=2故选:B【点睛】本题主要考查了分式方程的解法,涉及了一元二次方程的解法,属于基础题..使分式X2-5X-6的值等于零的X是( )X+1A.6 B.-1或6 C.-1 D.-6【答案】A【分析】将分式程X2-5X-6=0等价方程组卜2-5X^6=0,解方程组即可.X+1 IX+1≠0【详解】X2-5X-6CfX2-5X-6=0 [(x—6)(x+1)=0=0O〈 O〈X+1 [X+1≠0 [X≠-1解得:X=6故选:A【点睛】本题主要考查分式方程,解分式方程时,需注意分母不为零的条件,属于简单题3.分式6X2+12X+10可取的最小值为()X2+2X+2A.4 B.5 C.6 D.不存在【答案】A【详解】6X2+12X+106(X2+2X+2)-2〃2〃2 = =6 =6-7 X X2+2X+2 X2+2X+2 X2+2X+2 (X+1)2+1T(X+1>+1≥1八1 2 , , 2 ,即口0<τ τ <10>-7 τ >-26>6--, τ ≥4(X+1)2+1 (X+1)2+1 (X+1)2+16X2+12X+10X2+2X+2可取的最小值为4.故选A.4X 4X(X+1)4.分式丁二与 都有意义的条件是( )X-3 (2X-3)(x+1)一 3A.X≠— B.X≠-1 C.X≠—且X≠-1口.以上都不对2 2【答案】C【分析】根据分式的分母不能为零分式有意义,可得答案.【详解】4X 4X(X+1)解:由分式丁X与D都有意义,得2X-3 (2X-3)(X+1)2X—3≠0且X+1≠03解得X≠-且X≠-1故选:C.【点睛】本题考查了分式有意义的条件,分式的分母不等于零是分式有意义的条件.属于基础题..若分式X2-4的值为零,则X的值是( )X2-X-2A.2或-2B.2 C.-2 D.4【答案】C【分析】分式的值为0的条件是:分子为0,分母不为0.【详解】由X2-4=0,解得X=±2当X=2时,X2-X-2=22-2-2=0,故x=2不合题意;当X=-2时,X2-X-2=(-2)2-(-2)-2=4≠0所以X=-2时分式的值为0.故选:C【点睛】本题考查分式,分式是0的条件中注意分母不为0,属于基础题..若分式三二1的值为0,则X的取值为( )X+1A.x≠1 B.x≠-1 C.x=1 D.x=-1【答案】C【分析】根据分式值为零的条件可得X2-1=0,且X+1≠0,再解即可.【详解】由题意得:X2-1=0,且X+1≠0解得:X=1故选:C.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于
零.属于基础题.二、填空题.如果关于X的分式方程二-3=1无解,则m的值为___ ___.X—1x【答案】1或-2【分析】先移项通分,转化为一次方程无解问题或观察得出.3x≠1,方程可化为—=0,此时无解;Xx-m3rx+3 二一+1二 x-1xx易知x≠1且x≠0,整理得(m+2)x=3,若m=-2,此方程无解,故答案为:1或-2.【点睛】本题主要考查分式不等式的解得情况,注意分母的限制要求,侧重考查数学运算的核心素养.【详解】当m=1时,当m≠1时,8.当x=__时,分式胃的值等于零.【答案】9【分析】分式的值是0的条件是:分子为0,分母不为0.【详解】-K=0<,∣x∣-9=0nχ=9——ZX=..X+9≠0,当x=9时分式的值是0.故答案为:9【点睛】本题考查分式方程,注意分母不为0,属于基础题.X2-X-2>O9.与不等式组Iɔ,1 同解的一个分式不等式可以是__ _UX-2∣≥1Y—3【答案】J≥ox+1【分析】解出不等式组的解集为%∣X<-1或%≥3},从而可得其同解的一个分式不等式【详解】解:由%2一%一2〉0,得(X+1)(%-2)〉0,解得 或%〉2,由打一2∣≥1,得x—2≤-1或x—2≥1,解得x≤l或了≥3,所以不等式组l02 的解集为1或X≥3},UX-2∣≥1{Y2—X—2>0 V_a同解的一个分式不等式可以是一≥0,
∣x-2∣≥1 x+1X—3故答案为:±4≥ox+l三、解答题3 510.解分式方程:-=^-.Xx-2【答案】%=-3【解析】试题分析:根据解分式方程的一般步骤,可得分式方程的解.试题解析:原方程两边同乘以XG-2),得3x-6=5%解得:x=-3,检验X=-3是分式方程的解.11.若关于X的分式方程I==-3有增根,求实数机的值.【答案】m=l【解析】【分析】方程有增根即为分子为。时,分母无意义,从而可得解.【详解】m2Y-I-777,—S ... . —.-3=2土早=0有增根,则2X+m—5=0的解为2,所以m=1X—22—x x—2【点睛】本题主要考查了分式方程的求解,属于基础题.12.若关于x的分式方程ɪ=2-ʌ的解为正数,求满足条件的正整数m的值.
x-2 2一x【答案】1或3【解析】【分析】将分式通分得X+4m_00X_4一m≠2根据条件可得解.X-2【详解】X m x-m-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人房屋担保合同细则
- 个人借款还款合同书样本
- 专业商品保管合同样本全新修订版
- 个人消费借款合同模板
- 个体商家合作合同范本权威版
- 临时用工分包合同
- 个人住房按揭贷款合同样本
- 个人房屋抵押借款正式合同书
- 上海全日制员工劳动合同模板
- 2024年文化产业合作项目执行合同
- 安全生产网格员培训
- 统编版语文三年级下册第三单元综合性学习中华传统节日 活动设计
- 降低顺产产妇产后2小时失血率PDCA成果汇报书
- 小学数学分数四则混合运算300题带答案
- 林下野鸡养殖建设项目可行性研究报告
- 心肺复苏术课件2024新版
- 苜蓿青贮料质量分级DB41-T 1906-2019
- 新鲜牛肉购销合同模板
- 2024年内蒙古呼和浩特市中考文科综合试题卷(含答案)
- 大型商场招商招租方案(2篇)
- 会阴擦洗课件
评论
0/150
提交评论