




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页2023年数字图像处理实训报告5篇(大全)数字图像处理实训报告篇一实验报告班级:通信103学号:202327201姓名:计富威指导老师:孙洁实验一matlab数字图像处理初步一、实验目的与要求1.熟悉及掌握在matlab中可以处理哪些格式图像。2.纯熟掌握在matlab中如何读取图像。3.掌握如何利用matlab来获取图像的大小、颜色、高度、宽度等等。4.掌握如何在matlab中按照指定要求存储一幅图像的方法。5.图像间如何转化。二、实验内容及步骤1.利用imread函数读取一幅图像,假设其名为””,存入一个数组中;》》i=imread('');2.利用whos命令提取该读入图像””的根本信息;》》whosi3.利用imshow函数来显示这幅图像;》》imshow(i);4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;》》imfinfo('');5.利用imwrite函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,;语法:imwrite(原图像,新图像,‘quality’,q),q取0-100。》》imwrite(i,'','quality',50)6.同样利用imwrite函数将最初读入的tif图象另存为一幅bmp图像。》》imwrite(i,'');7.用imread读入图像:;》》b=imread('');》》c=imread('');8.用imfinfo获取图像的大小;》》imfinfo('');》》imfinfo('');9.用figure,imshow分别将显示出来,观察两幅图像的质量。》》figure》》imshow(b);》》figure》》imshow(c);〔图像截图〕〔图像截图〕10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。》》d=im2bw(b);》》figure》》imshow(b);》》figure》》imshow(d);〔二值化截图〕三、实验总结通过实验matlab软件的根本使用有了根本的理解,学会了使用matlab软件来读取一个特定格式的图像,并通过相关的命令语句对图像进展格式转换、图像压缩、二值化等的处理,掌握了利用matlab来获取图像的大小、颜色、高度、宽度等等,掌握在matlab中如何通过imshow语句来读取图像等等。第二图像根本运算一、实验目的1.理解图像的算术运算在数字图像处理中的初步应用。2.体会图像算术运算处理的过程和处理前后图像的变化。二、实验原理图像的代数运算是图像的标准算术操作的实现方法,是两幅输入图像之间进展的点对点的加、减、乘、除运算后得到输出图像的过程。假如输入图像为a(x,y)和b(x,y),输出图像为c(x,y),那么图像的代数运算有如下四种形式:c(x,y)=a(x,y)+b(x,y)c(x,y)=a(x,y)-b(x,y)c(x,y)=a(x,y)*b(x,y)c(x,y)=a(x,y)/b(x,y)三、实验步骤1.图像的加法运算在matlab中,假如要进展两幅图像的加法,或者给一幅图像加上一个常数,可以调用imadd函数来实现。imadd函数将某一幅输入图像的每一个像素值与另一幅图像相应的像素值相加,返回相应的像素值之和作为输出图像。imadd函数的调用格式如下:z=imadd〔x,y〕首先读入两幅图像》》a=imread('');》》b=imread('')通过一个加法操作:》》c=imadd(a,b);给图像的每一个像素加上一个常数可以使图像的亮度增加。如截图第一张为原图,第二张为亮度加50,第三张为亮度减502.图像的减法运算在matlab中,使用imsubtract函数可以将一幅图像从另一幅图像中减去,或者从一幅图像中减去一个常数。imsubtract函数将一幅输入图像的像素值从另一幅输入图像相应的像素值中减去,再将这个结果作为输出图像相应的像素值。imsubtract函数的调用格式如下:z=imsubtract(x,y);读入一幅画后通过减法》》a3=imsubtract(a,50);3.图像的乘法运算在matlab中,使用immultiply函数实现两幅图像的乘法。immultiply函数将两幅图像相应的像素值进展元素对元素的乘法操作〔matlab点乘〕,并将乘法的运算结果作为输出图形相应的像素值。immulitply函数的调用格式如下:z=immulitply(x,y)读入一幅图后通过乘法操作》》a=imread('');》》b=immultiply(a,1.5);4.图像的除法运算在matlab中使用impide函数进展两幅图像的除法。impide函数对两幅输入图像的所有相应像素执行元素对元素的除法操作〔点除〕,并将得到的结果作为输出图像的相应像素值。impide函数的调用格式如下:z=impide(x,y)读入一幅图后通过除法操作四、实验总结通过对图像的四那么运算了结图像的不同变化过程,对软件的进一步使用也有了更加深化的认识。实验三图像增强—空域滤波一、实验目的进一步理解matlab软件/语言,学会使用matlab对图像作滤波处理,使学生有时机掌握滤波算法,体会滤波效果。理解几种不同滤波方式的使用和使用的场合,培养处理实际图像的才能,并为课堂教学提供配套的理论时机。二、实验设备与软件(1)ibm-pc计算机系统(2)matlab软件/语言包括图像处理工具箱(imageprocessingtoolbox)(3)实验所需要的图片三、实验内容与步骤a)调入并显示原始图像“”。》》i=imread('');b)利用imnoise命令在图像“”上参加高斯(gaussian)噪声》》j=imnoise(i,'gauss',0.02);%添加高斯噪声c)利用预定义函数fspecial命令产生平均(average)滤波器d〕分别采用3x3和5x5的模板,分别用平均滤波器以及中值滤波器,对参加噪声的图像进展处理并观察不同噪声程度下,上述滤波器处理的结果;》》ave1=fspecial('average',3);%产生3×3的均值模版》》ave2=fspecial('average',5);%产生5×5的均值模版》》k=filter2(ave1,j)/255;%均值滤波3×3》》l=filter2(ave2,j)/255;%均值滤波5×5e〕选择不同大小的模板,对参加某一固定噪声程度噪声的图像进展处理,观察上述滤波器处理的结果。》》m=medfilt2(j,[33]);%中值滤波3×3模板》》n=medfilt2(j,[44]);%中值滤波4×4模板f〕上参加椒盐噪声(salt-pepper)》》j=imnoise(i,'salt-pepper',0.02);%添加椒盐噪声四、实验总结椒盐噪声是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割引起,去除脉冲干扰及椒盐噪声最常用的算法是中值滤波。椒盐噪声是指两种噪声,一种是盐噪声,另一种是胡椒噪声。盐=白色,椒=黑色。前者是高灰度噪声,后者属于低灰度噪声。一般两种噪声同时出现,呈如今图像上就是黑白杂点。这点我们通过实验结果可以明显看到。中值滤波对于滤除图像的椒盐噪声非常有效。实验四图像分割一、实验目的使用matlab软件进展图像的分割。使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。二、实验要求要求学生可以自行评价各主要算子在无噪声条件下和噪声条件下的分割性能。可以掌握分割条件(阈值等)的选择。完成规定图像的处理并要求正确评价处理结果,可以从理论上作出合理的解释。三、实验内容与步骤(1)使用roberts算子的图像分割实验,,截图如下(2)使用prewitt算子的图像分割实验截图如下(3)使用sobel算子的图像分割实验(4)使用log(拉普拉斯-高斯)算子的图像分割实验四、实验结果对roberts算子、prewitt算子、sobel算子、log(拉普拉斯-高斯)算子的运算对图像的结果有了根本的认识,加深学习效果。实验五形态学运算1、实验目的学习常见的数学形态学运算根本方法,理解腐蚀、膨胀、开运算、闭运算获得的效果,培养处理实际图像的才能,并为课堂教学提供配套的理论时机。2、实验要求利用matlab工具箱中关于数学形态学运算的函数,计算本指导书中指定二值图像进展处理。3、实验设备与软件-pc计算机系统软件/语言包括图像处理工具箱(imageprocessingtoolbox)3.实验所需要的图片4、实验内容与步骤1.调入并显示图像“”;2.调入并显示图像“”;3.选取适宜的阈值,得到二值化图像“”;》》bw=im2bw(i,level);%二值化4.设置构造元素;5.对得到的二值图像“”进展腐蚀运算;》》bw2=imerode(bw,se1);%腐蚀6.对得到的二值图像“”进展膨胀运算;》》bw1=imdilate(bw,se);%膨胀7.对得到的二值图像“”进展开运算;》》bw3=bwmorph(bw,'open');%开运算8.对得到的二值图像“”进展闭运算;》》bw4=bwmorph(bw,'close');%闭运算9.将两种处理方法的结果作比拟;五、实验总结通过本次实验,学习了常见的数学形态学运算根本方法,理解腐蚀、膨胀、开运算、闭运算获得的效果,培养处理实际图像的才能,通过自己动手的实验,对课本上的知识有了更加深化的理解。数字图像处理实训报告篇二实验报告书系部学生专业班实验名称姓名名称级时间:::::实验一直方图平衡一、实验目的在学习图像直方图的概念、计算方法、性质和相关应用根底上,生成、绘制图像的直方图,并应用matlab编程实现图像直方图平衡化程序。二、实验内容〔1〕计算并绘制图像直方图;〔2〕编程实现图像的直方图平衡化处理,显示平衡前后的直方图和图像;三、实验运行结果四、实验中遇到的问题及解决方法1、显示无法找到图像文件,应将图片与xx.m文件置于同一文件夹;2、编程过程中应注意标点的输入法,应该用英文输入,否那么会报错。3、编程完成后运行时输入文件名与保存时文件名一样,区分大小写。五、考虑题〔1〕、灰度直方图可以反映一幅图像的哪些特征?答:1、表征了图像的一维信息。只反映图像中像素不同灰度值出现的次数〔或频数〕而未反映像素所在位置。2、与图像之间的关系是多对一的映射关系。一幅图像唯一确定出与之对应的直方图,但不同图像可能有一样的直方图。3、子图直方图之和为整图的直方图。(2)平衡化后的直方图有何特点?答:经直方图平衡化处理后,可以得到一副改善了质量的新图像。这幅图像的灰度层次将不再是呈黑暗色彩的图像,而是一副灰度层次较为适中的、比原始图像明晰、明快得多的图像。处理的结果使图像更合适与人的视觉特征或机器的识别系统。六、实验心得体会本次实验中,因为初学这个软件,我学习到了在程序中关于图像的运用,以及也复习了课本上的许多知识,加深了对直方图平衡化的理解。七、程序清单clearall;i=imread('');%翻开一幅灰度图像[m,n]=size(i);p=m*n;j=imhist(i)./p;%计算图像的归一化直方图subplot(1,3,1),imshow(i);subplot(1,3,2),imhist(i,64);subplot(1,3,3),plot(j);〔2〕直方图平衡化clearall;im=imread('');j=histeq(im);%平衡化subplot(2,2,1);imshow(im);title('原图');%显示原图subplot(2,2,2);imhist(im);title('原图直方图');%显示原图的直方图subplot(2,2,3);imshow(j);title('平衡化结果');%显示平衡化后的图像subplot(2,2,4);imhist(j);title('平衡化结果的直方图');%显示平衡化后的直方图实验二频域图像增强一、实验目的1、频域图像增强2、掌握基于频域的图像增强方法。二、实验内容〔1〕编程实现图像的理想低通和高通滤波;〔2〕编程实现图像的巴特沃斯低通和高通滤波。三、实验运行结果四、实验中遇到的问题及解决方法显示图像无法翻开,最终查出来时图像格式弄错了。五、考虑题分析^p为什么图像通过低通滤波器后变得模糊?为什么通过高通滤波器后得到锐化结果?答:图像的精细构造及突变部分主要由高频成分起作用,故经低通滤波后图像的精细构造消失,变得模糊;经高通滤波后图像得到锐化。六、实验心得体会本实验中遇到很多问题及错误,例如图像打不开、处理后图像模糊等,都是经常容易发生的错误,最后实验几次,就可以逐一自己解决了。使自己对数字图像处理课程中的许多问题有了更实际和确切的深化理解。七、程序清单对该图进展低通滤波选取d=190imshow(uint8(abs(d)));title('理想高通滤波后的图像');%频域增强〔巴特沃斯原型〕%二阶巴特沃斯〔butterworth〕低通滤波器%clc;%clear;figure;j1=imread('');subplot(3,2,1);imshow(j1);title('原图');f=double(j1);g=fft2(f);%傅立叶变换g=fftshift(g);%转换数据矩阵subplot(3,2,2);x=0:1:255;y=0:1:255;[x,y]=meshgrid(x,y);z=log(abs(g));%取幅度mesh(z);%以三维坐标显示该图像频谱图title('原图频谱');[m,n]=size(g);nn=2;%二阶巴特沃斯(butterworth)低通滤波器d0=20;m=fix(m/2);n=fix(n/2);fori=1:mforj=1:nd=sqrt((i-m)2+(j-n)2);h=1/(1+0.414*(d/d0)(2*nn));%计算低通滤波器传递函数result(i,j)=h*g(i,j);%利用二阶巴特沃斯〔butterworth〕高通滤波器实验三图像边缘检测与连接一、实验目的图像边缘检测与连接二、实验内容〔1〕编程实现一阶差分边缘检测算法,包括robert梯度算子、prewitt算子、sobel算子等;〔2〕编程实现二阶差分拉普拉斯边缘检测算法以及log检测法和canny检测法;〔3〕分析^p与比拟各种边缘检测算法的性能;〔4〕编程实现hough变换提取直线〔5〕分析^phough变换检测性能;三、实验运行结果四、实验中遇到的问题及解决方法拷贝文件后没改文件名,直接执行时出现错误,最后重新修改后重新编译,使之成功。五、考虑题〔1〕边缘的方向是什么意思?为什么要考虑边缘的方向?答:边缘常常意味着一个区域的终结和另一个区域的开场,图像的边缘也包含了物体的形状的重要信息,他不仅在分析^p图像时大幅度的减少了要处理的信息量,而且还保护了目的的边界构造。所以考虑边缘的方向很重要。〔2〕hough变换原理是什么?答:hough变换的根本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为准找参数空间的峰值问题。也即把检测整体特性转化为检测部分特性。比方直线、椭圆、圆、弧线等。六、实验心得体会对于一些图像处理的函数不是很理解,只可以按课本的参照函数拷贝做实验,对于其中的一些函数问题理解不是很透彻,有些甚至完全不懂。还得继续努力。七、程序清单1、边缘检测由edge函数实现各算子对图像的边缘检测clearall;i=imread('d:');i=rgb2gray(i);bw1=edge(i,'sobel');%利用sobel算子进展边缘检测bw2=edge(i,'roberts');%利用roberts算子进展边缘检测bw3=edge(i,'prewitt');%利用prewitt算子进展边缘检测bw4=edge(i,'log');%利用log算子进展边缘检测bw5=edge(i,'canny');%利用canny算子进展边缘检测subplot(2,3,1),imshow(i)subplot(2,3,2),imshow(bw1)subplot(2,3,3),imshow(bw2)subplot(2,3,4),imshow(bw3)subplot(2,3,5),imshow(bw4)subplot(2,3,6),imshow(bw5)2、边缘连接使用hough变换作线检测和连接clearall;rgb=imread('d:');i=rgb;%i=rgb2gray(rgb);bw=edge(i,'canny');%利用canny算子提取图像边缘[h,t,r]=hough(bw,'rhoresolution',0.5,'thetaresolution',0.5);figure(1),imshow(t,r,h,[],'notruesize'),axison,axisnormalxlabel('t'),ylabel('r')p=houghpeaks(h,5,'threshold',ceil(0.3*max(h(:))));%找到5个较明显的hough变换峰值holdonplot(t(p(:,2)),r(p(:,1)),'s','color','white');lines=houghlines(bw,t,r,p,'fillgap',10,'minlength',10);%查找并链接线段figure,imshow(bw),holdon%在二值图中叠加显示这些线段fork=1:length(lines)xy=[lines(k).point1;lines(k).point2];数字图像处理实训报告篇三数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进展分析^p、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因此图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法仍然占有重要的地位。图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有亲密的关系。传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比方降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。二、实验目的稳固所学知识,进步所学才能三、实验内容利用matlab的gui程序设计一个简单的图像处理程序,并含有如下根本功能:1.读入一幅rgb图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示rgb图像和灰度图像,注上文字标题2.对给定图像进展旋转3.对给定的图像添加噪声〔椒盐噪声、高斯噪声〕四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码〔1〕读入一幅rgb图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示rgb图像和灰度图像,注上文字标题效果展示:代码:a=imread('c:documentsand');i=rgb2gray(a);i=im2bw(a,0.5);subplot(3,1,1);imshow(a);title('图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(i);title('二值图像')〔2〕图像旋转原图效果展示:代码:clc;clearall;closeall;img=imread('d:mydocumentsmy');img=double(img);[hw]=size(img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew);u0=w*sin(alpha);t=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)];imgnew2=zeros(hnew,wnew);imgnew1=zeros(hnew,wnew);foru=1:hnewforv=1:wnewtem=t*([u;v]-[u0;0]);x=tem(1);y=tem(2);ifx》=1--x<=h--y》=1--y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if(x-x_low)<=(x_up-x)x=x_low;elsex=x_up;if(y-y_low)<=(y_up-y)y=y_low;elsey=y_up;p1=img(x_low,y_low);p2=img(x_up,y_low);p3=img(x_low,y_low);p4=img(x_up,y_up);s=x-x_low;t=y-y_low;imgnew1(u,v)=img(x,y);figure;imshow(imgnew2,[]);b=imrotate(img,alpha/pi*180);figure;imshow(b,[]);〔3〕对给定的图像添加噪声〔斑点噪声、高斯噪声〕效果展示:代码:i=imread('d:mydocumentsmy');figure,subplot(211);imshow(i);title('原图');j1=imnoise(i,'gaussian',0,0.02);subplot(223);imshow(j);title('添加高斯噪声');j=imnoise(i,'speckle',0.04);subplot(224);imshow(j);title('添加斑点噪声');五、算法综述灰度图像:一幅完好的图像,是由红色、绿色、蓝色三个通道组成的。红色、绿色、蓝色三个通道的缩览图都是以灰度显示的。用不同的灰度色阶来表示“红,绿,蓝”在图像中的比重。通道中的纯白,代表了该色光在此处为最高亮度,亮度级别是255。通道是整个photoshop显示图像的根底。色彩的变动,实际上就是间接在对通道灰度图进展调整。通道是photoshop处理图像的核心部分,所有的色彩调整工具都是围绕在这个核心周围使用的。在计算机领域中,灰度数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑色与白色两种颜色;灰度图像在黑色与白色之间还有许多级的颜色深度。但是,在数字图像领域之外,“黑白图像”也表示“灰度图像”,例如灰度的照片通常叫做“黑白照片”。在一些关于数字图像的文章中单色图像等同于灰度图像,在另外一些文章中又等同于黑白图像。灰度图像经常是在单个电磁波频谱如可见光内测量每个像素的亮度得到的。用于显示的灰度图像通常用每个采样像素8位的非线性尺度来保存,这样可以有256级灰度。这种精度刚刚可以防止可见的条带失真,并且非常易于编程。在医学图像与遥感图像这些技术应用中经常采用更多的级数以充分利用每个采样10或12位的传感器精度,并且防止计算时的近似误差。在这样的应用领域每个采样16位即65536级得到流行。二值图像:是指每个像素不是黑就是白,其灰度值没有中间过渡的图像。二值图像一般用来描绘文字或者图形,其优点是占用空间少,缺点是,当表示人物,风景的图像时,二值图像只能描绘其轮廓,不能描绘细节。这时候要用更高的灰度级。二值图像是每个像素只有两个可能值的数字图像。人们经常用黑白、b-w、单色图像表示二值图像,但是也可以用来表示每个像素只有一个采样值的任何图像,例如灰度图像等。二值图像中所有的像素只能从0和1这两个值中取,因此在matlab中,二值图像用一个由0和1组成的二维矩阵表示。这两个可取的值分别对应于关闭和翻开,关闭表征该像素处于背景,而翻开表征该像素处于前景。以这种方式来操作图像可以更容易识别出图像的构造特征。二值图像操作只返回与二值图像的形式或构造有关的信息,假如希望对其他类型的图像进展同样的操作,那么首先要将其转换为二进制的图像格式,可以通过调用matlab提供的im2bw〔〕来实现。二值图像经常出如今数字图像处理中作为图像掩码或者在图像分割、二值化和dithering的结果中出现。一些输入输出设备,如激光打印机、机、单色计算机显示器等都可以处理二值图像。二值图像经常使用位图格式存储。二值图像可以解释为二维整数格z,图像变形处理领域很大程度上就是受到这个观点启发。图像旋转:图像旋转是指图像以某一点为中心旋转一定的角度,形成一幅新的图像的过程。当然这个点通常就是图像的中心。既然是按照中心旋转,自然会有这样一个属性:旋转前和旋转后的点离中心的位置不变.根据这个属性,我们可以得到旋转后的点的坐标与原坐标的对应关系。由于原图像的坐标是以左上角为原点的,所以我们先把坐标转换为以图像中心为原点。假设原图像的宽为w,高为h,〔x0,y0〕为原坐标内的一点,转换坐标后的点为〔x1,y1〕。那么不难得到:x1=x0-w/2;y1=-y0+h/2;在新的坐标系下,假设〔x0,y0〕间隔原点的间隔为r,点与原点之间的连线与x轴的夹角为b,旋转的角度为a,旋转后的点为〔x1,y1〕噪声:是电路或系统中不含信息量的电压或电流。在工业与自然界中,存在着各种干扰〔噪声〕,如大功率电力电子器件的接入、大功率用电设备的开启与断开、雷击闪电等都会使空间电场和磁场产生有序或无序的变化,这些都是干扰〔或噪声〕。这些产生的电磁波或尖峰脉冲通过磁、电耦合或是通过电线等途径进入放大电路,各种电气设备,形成各种形式的干扰。斑点噪声:斑点噪声是sar成像系统的一大特色,自根本分辨单元内地物的随机散射,在图像上表现为信号相关〔如在空间上相关〕的小斑点,它既降低了图像的画面质量,又严重影响图像的自动分割、分类、目的检测以及其它定量专题信息的提取。sar图像斑点噪声的去除一方面要抑制图像均匀区域斑点噪声,另一方面要保持图像边缘和纹理细节信息。sar斑点噪声的抑制可通过非相干多视处理,也可使用空间域滤波实现。非相干多视处理睬降低图像的地面分辨率。因此,涌现出了一系列空间域滤波方法,如均值滤波、中值滤波、lee滤波、kuan滤波、frost滤波、sigma滤波以及gammamap滤波等。但这类算法存在自身无法克制的矛盾:一方面为增强斑点去噪效果需选较大的滤波窗口,另一方面为保持图像的实际分辨率要求所选的窗口较小。高斯噪声:所谓高斯噪声是指它的概率密度函数服从高斯分布〔即正态分布〕的一类噪声。假如一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,那么称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。高斯白噪声包括热噪声和散粒噪声。实验中是通过matlab自带的函数产生噪声,各函数如下:j1=imnoise(i,'salt-pepper',0.05);%添加椒盐噪声j2=imnoise(i,'gaussian',0,0.03);%添加均值为0,方差为0.03的高斯噪声。六、matlab优势matlab是一个包含大量算法的集合。其可以快捷的实现用户所需的各种计算功能。函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和过失处理。在通常情况下,可以用它来代替底层编程语言,如c和c++。在计算要求一样的情况下,使用matlab的编程工作量会大大减少。matlab的这些函数集包括从最简单最根本的函数到诸如矩阵,特征向量、快速傅立叶变换的复杂函数。函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析^p、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。图形处理功能图形处理功能matlab自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进展标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。新版本的matlab对整个图形处理功能作了很大的改良和完善,使它不仅在一般数据可视化软件都具有的功能〔例如二维曲线和三维曲面的绘制和处理等〕方面更加完善,而且对于一些其他软件所没有的功能〔例如图形的光照处理、色度处理以及四维数据的表现等〕,matlab同样表现了出色的处理才能。同时对一些特殊的可视化要求,例如图形对话等,matlab也有相应的功能函数,保证了用户不同层次的要求。另外新版本的matlab还着重在图形用户界面〔gui〕的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足模块集合工具箱matlab对许多专门的领域都开发了功能强大的模块集和工具箱。一般来说,它们都是由特定领域的专家开发的,用户可以直接使用工具箱学习、应用和评估不同的方法而不需要自己编写代码。目前,matlab已经把工具箱延伸到了科学研究和工程应用的诸多领域,诸如数据采集、数据库接口、概率统计、样条拟合、优化算法、偏微分方程求解、神经网络、小波分析^p、信号处理、图像处理、系统辨识、控制系统设计、lmi控制、鲁棒控制、模型预测、模糊逻辑、金融分析^p、地图工具、非线性控制设计、实时快速原型及半物理仿真、嵌入式系统开发、定点仿真、dsp与通讯、电力系统仿真等,都在工具箱〔toolbox〕家族中有了自己的一席之地。七、总结运用matlab软件对图像进展处理,让我稳固了之前所学的知识,同时也在这次作业中更加理解到matlab语言在生活中的运用环境和掌握这门语言的重要性八、存在问题1.在进展图像增强时要不要讲图像先进展平滑处理?2.如何增加这个算法的准确度3.在此次作业中,为何添加椒盐噪声时无法显示数字图像处理实训报告篇四实验一数字图像的获取一、实验目的1、理解图像的实际获取过程。2、稳固图像空间分辨率和灰度级分辨率、邻域等重要概念。3、纯熟掌握图像读、写、显示、类型转换等matlab函数的用法。二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。2、编程实现空间分辨率变化的效果。三、实验原理1、图像读、写、显示i=imread(‘’)imview(i)imshow(i)imwrite(i,’wode’)2、图像类型转换i=mat2gray(a,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵a转化为灰度图像i,amin对应灰度0,amax对应1,也可以不指定该区间。[x,map]=gray2ind(i,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64i=ind2gray(x,map);索引图像转化为灰度图像i=grb2gray(rgb);真彩色图像转化为灰度图像[x,map]=rgb2ind(rgb);真彩色图像转化为索引图像rgb=ind2rgb(x,map);索引图像转化为真彩色图像bw=im2bw(i,level);将灰度图像转化为二值图像,level取值在[0,1]之间bw=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间bw=im2bw(rgb,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread('');i=rgb2gray(in);[x,map]=gray2ind(i,128);subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map)、%空间分辨率变化的效果clc,closeall,cleari=imread('');实验二图像的几何变换一、实验目的掌握图像的根本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练惯用matalb命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。4、再开拓一个窗口,分别用最近邻插值法、双线性插值法实现图像顺势针旋转50°,显示在同一窗口中,并比拟两种效果图〔在报告中〕三、实验原理提示:图片平移就是实现运算x'10x0x'y01y0y10011x'xx0即:y'yy0四、实验代码及结果1、function[i]=hmove(i,x0,y0);%编写实现图像平移的函数hmove,平移量为[r,c]=size(i);%x0,y0,平移前图像矩阵为i,i(r+x0,c+y0)=0;%平移后图像矩阵为iforx=1:r;fory=1:c;x1=x+x0;y1=y+y0;i(x1,y1)=i(x,y);subplot(2,2,2)i1=hmove(gray1,100,20);subimage(gray1),axis('image');subplot(2,2,4),imagesc(i1),colormap(gray),axis([1,700],[1,820]);2、显示图像的傅立叶频谱a=0:800;b=0:600;%[x,y]=meshgrid([-20:0.2:20],[-20:0.2:20]);[x,y]=meshgrid(a,b);i=imread('');i=rgb2gray(i);subplot(1,2,1),subimage([0,800],[0,600],i);subplot(1,2,2);s=fft2(i,601,801);mesh(x,y,log(abs(s)));%图像的傅立叶幅度频谱以三维图形显示colormap(hsv);实验三图像空域变换增强〔1〕一、实验目的1、掌握直方图平衡化算法。2、稳固灰度变换、直方图修正、图像算术和逻辑运算等根底知识。3、纯熟掌握空域变换增强的matlab相关函数用法,并能利用算法自己编写matlab程序实现图像空域变换增强。二、实验内容1、用函数implement取反。2、做线性灰度变换。3、的直方图,并和imhist函数生成的直方图作比拟。三、实验原理在图像处理中,空域是指由像素组成的空间,空域增强方法是指直接作用于像素的增强方法。空域处理可以表示为:g(x,y)=t[f(x,y)]j=implement(i);对图像取反imhist;显示图像的直方图histeq;直方图平衡化函数imnoise(i,type,parameters);给图像加噪声bitand;图像位与运算bitor;图像位或运算四、实验代码与结果1、i=imread('');j=implement(i);subplot(121),imshow(i)subplot(122),imshow(j)2、clear,closeall,clcin1=imread('');实验四图像空域变换增强〔2〕一、实验目的1、掌握直方图平衡化算法。2、稳固灰度变换、直方图修正、图像算术和逻辑运算等根底知识。3、纯熟掌握空域变换增强的matlab相关函数用法,并能利用算法自己编写matlab程序实现图像空域变换增强。实现频域线性变换,非线性变换增强二、实验内容1、进展增强运算。2、作逻辑与和逻辑或运算。三、实验原理j=implement(i);对图像取反imhist;显示图像的直方图histeq;直方图平衡化函数imnoise(i,type,parameters);给图像加噪声bitand;图像位与运算bitor;图像位或运算四、实验代码与结果1、clear;closeall;clc;tu=imread('');%输入图像%tu=rgb2gray(tu);%转换为灰度图像n=zeros(1,256);%n为原始图像各灰度级像素个数p=zeros(1,256);%p为原始成图像直方图q=zeros(1,256);%q为原始图像直方图累积分布函数newn=zeros(1,256);%newn为新生成图像各灰度级像素个数newp=zeros(1,256);%newp为新生成图像直方图subplot(231),imshow(tu)subplot(232),plot(p),axis([125600.06])subplot(233),plot(q),axis([125601])subplot(234),imshow(new_tu,[])subplot(235),plot(newp),axis([125600.06])subplot(236),plot(newq),axis([125601])实验五图像滤波增强一、实验目的1、掌握各种空域和频域图像滤波增强算法已经模板运算的根本方法。2、稳固卷积定理、滤波处理等根底知识。3、纯熟掌握空域和频域滤波增强的matlab相关函数用法。二、实验内容1、利用均值滤波算法对已被噪声污染的图像进展滤波除噪处理。、利用标准中值滤波算法对已被噪声污染的图像进展滤波除噪处理。3、用prewitt进展锐化滤波处理。三、实验原理h=fspecial(type);h=fspecial(type,parameters);用于创立一个指定的滤波器模板,type指滤波器的类型。parameters是与指定的滤波器有关的参数。y=filter2(b,x);用于进展二维线性数字滤波,使用矩阵b中的二维滤波器对数据x进展滤波。结果y是通过二维互相关计算出来的,大小与x一样。y=filter2(b,x,’shape’);结果y的大小由参数shape确定,shape的取值如下:full:返回二维户相关的全部结果,size(y)》size(x)same:返回二维户相关结果的中间部分,y的大小与x一样valid:返回二维户相关未使用边缘补0的部分,size(y)ifsum3、%利用otsu法阈值选择的方法分割图像clc,clear,closeallk=8;%k表示无符号整型数的位数l=2k;in=imread('');[m,n]=size(in);num=zeros(1,256);%num是每个灰度级对应的像素个数p=zeros(1,256);%p是每个灰度级出现的概率数字图像处理实训报告篇五数字图像处理实验学生姓名:专业年级:报告叶圣红学号:2023704809级电子信息工程二班实验一常用matlab图像处理命令一、实验内容1、读入一幅rgb图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示rgb图像和灰度图像,注上文字标题。实验结果如右图:代码如下:subplot(1,3,1)i=imread('e:')imshow(i)title('rgb')subplot(1,3,2)j=rgb2gray(i)imshow(j)title('灰度')subplot(1,3,3)k=im2bw(j,0.5)imshow(k)title('二值')2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。实验结果如右图:代码如下:subplot(3,2,1)i=imread('e:')x=imresize(i,[250,320])imshow(x)title('原图x')subplot(3,2,2)j=imread(''e:')y=imresize(j,[250,320])imshow(y)title('原图y')subplot(3,2,3)z=imadd(x,y)imshow(z)title('相加结果');subplot(3,2,4);z=imsubtract(x,y);imshow(z);title('相减结果')subplot(3,2,5);z=immultiply(x,y);imshow(z);title('相乘结果')subplot(3,2,6);z=impide(x,y);imshow(z);title('相除结果')3、对一幅图像进展灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。实验结果如右图:代码如下:subplot(2,2,1)i=imread('e:')imshow(i)title('原图')subplot(2,2,2)j=imadjust(i,[],[],3);imshow(j)title('变暗')subplot(2,2,3)j=imadjust(i,[],[],0.4)imshow(j)title('变亮')subplot(2,2,4)j=255-iimshow(j)title('变负')二、实验总结分析^p图像的代数运算结果,分别陈述图像的加、减、乘、除运算可能的应用领域。解答:图像减运算与图像加运算的原理和用法类似,同样要求两幅图像x、y的大小类型一样,但是图像减运算imsubtract有可能导致结果中出现负数,此时系统将负数统一置为零,即为黑色。乘运算实际上是对两幅原始图像x、y对应的像素点进展点乘(x.*y),将结果输出到矩阵z中,假设乘以一个常数,将改变图像的亮度:假设常数值大于1,那么乘运算后的图像将会变亮;叵常数值小于是,那么图像将会会暗。可用来改变图像的灰度级,实现灰度级变换,也可以用来遮住图像的某些部分,其典型应用是用于获得掩膜图像。除运算操作与乘运算操作互为逆运算,就是对两幅图像的对应像素点进展点〔x./y),impide同样可以通过除以一个常数来改变原始图像的亮度,可用来改变图像的灰度级,其典型运用是比值图像处理。加法运算的一个重要应用是对同一场景的多幅图像求平均值减法运算常用于检测变化及运动的物体,图像相减运算又称为图像差分运算,差分运算还可以用于消除图像背景,用于混合图像的别离。实验二图像根本操作一、实验内容1.调试运行8倍减采样程序,分析^p程序,对每条语句给出注释,并显示最终执行结果。1、调试运行8倍减采样程序,分析^p程序,对每条语句给出注释,并显示最终执行结果。a=imread(‘e:’);%读取图片b=rgb2gray(a);%变为灰度图像[wid,hei]=size〔b〕;%改变图片大小quartimg=zeros(wid/2+1,hei/2+1);i1=1;j1=1;fori=1:2:widforj=1:2:heiquartimg(i1,j1)=b(i,j);j1=j1+1;2、显示一幅灰度图像a,改变图像亮度使其整体变暗得到图像b,显示两幅图像的直方图subplot(1,2,1);a=imread('e:');imshow(a);title('a');subplot(1,2,2);b=imadjust(a,[],[],3);title('b')显示直方图程序:subplot(1,2,1);imhist(a);title('a的直方图')subplot(1,2,2);imhist(b);title('b的直方图')3、对图像b进展直方图平衡化,显示结果图像和对应直方图。subplot(1,2,1);j=histeq(b);imshow(j);title('b平衡化');subplot(1,2,2);imhist(j);title('b平衡化后的直方图')平衡化的图像和直方图:4、读入图像c,执行直方图规定化,使图像a的灰度分布与c大致一样,显示变换后图像及对应直方图。[counts,x]=imhist(c);subplot(2,2,1);imshow(a);title('图a');subplot(2,2,2);c=imread('e:');imshow(c);title('图c');subplot(2,2,3);j=histeq(a,counts);imshow(j);subplot(2,2,4);imhist(j)实验三图像变换一、实验内容1、对一幅图像进展缩小,显示原始图像与处理后图像,分别对其进展傅里叶变换,显示变换后结果,分析^p原图的傅里叶谱与平移后傅里叶频谱的对应关系。i=imread('f:');y=rgb2gray(i);subplot(2,2,1);imshow(y);title('原图')j=imresize(y,0.5);subplot(2,2,2);imshow(j);title('缩小图')m=fft2(y);subplot(2,2,3);imshow(abs(log(m)),[]);title('原图傅里叶变化')n=fft2(j);subplot(2,2,4);imshow(abs(log(n)),[]);title('缩小图傅里叶变化')2、对一幅图像进展旋转,显示原始图像与处理后图像,分别对其进展傅里叶变换,显示变换后结果,分析^p原图的傅里叶谱与旋转后傅里叶频谱的对应关系。i=imread('e:');j=rgb2gray(i);subplot(2,2,1);imshow(j);title('原图')m=imrotate(j,45,'bilinear');subplot(2,2,2);imshow(m);title('旋转图')p=fftshift(fft2(j));subplot(2,2,3);imshow(abs(log(p)),[]);title('原图傅里叶变化')q=fftshift(fft2(m));subplot(2,2,4);imshow(abs(log(q)),[]);title('旋转图傅里叶变化')实验四常用图像增强方法一、实验内容1、采用二维中值滤波函数medfilt2对受椒盐噪声干扰的图像滤波,窗口分别采用3*3,5*5,7*7subplot(2,2,1);a=imread('e:');j=imnoise(a,'salt-pepper',0.04);imshow(j);title('椒盐噪声图像');subplot(2,2,2);i_filter1=medfilt2(j,[33]);imshow(i_filter1);title('3x3');subplot(2,2,3);i_filter2=medfilt2(j,[55]);imshow(i_filter2);title('5x5');subplot(2,2,4);i_filter3=medfilt2(j,[77]);imshow(i_filter3);title('7x7');2、采用matlab中的函数filter2对受噪声干扰的图像进展均值滤波subplot(1,2,1);a=imread('e:');j=imnoise(a,'salt-pepper',0.04);imshow(j);title('椒盐噪声图像');subplot(1,2,2);h=fspecial('average');m=filter2(h,j);imshow(m);title('均值滤波')3、采用三种不同算子对图像进展锐化处理。subplot(1,4,1);i=imread('f:数字图像处理');i1=rgb2gray(i);imshow(i1);title('原图像');subplot(1,4,2);h=fspecial('laplacian');i2=filter2(h,i1);imshow(i2);title('拉式算子');subplot(1,4,3)h=fspecial('prewitt');i3=filter2(h,i1);imshow(i3);title('prewitt算子')subplot(1,4,4)h=fspecial('sobel');i4=filter2(h,i1)imshow(i4);title('sobel算子')二、实验总结1、比拟不同平滑滤波器的处理效果,分析^p其优缺点中值滤波比低通滤波消除噪声更有效。因为噪声多为尖峰状干扰,假设用低通滤波虽能去除噪声但陡峭的边缘将被模糊。中值滤波能去除点状尖峰干扰而边缘不会变坏。理想低通滤波器平滑处理的概念是明晰的,但在处理过程中会产生较严重的模糊和振铃现象。这种现象正是由于傅里叶变换的性质决定的。2、比拟不同锐化滤波器的处理效果,分析^p其优缺点梯度算子:梯度对应的是一阶导数,梯度算子是一阶导数算子。梯度方向:在图像灰度最大变化率上,反映出图像边缘上的灰度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 油菜双密双高多抗技术
- 2024国际运输市场动态及试题及答案
- 考点26化学平衡状态、化学平衡的移动(核心考点精讲精练)-备战2025年高考化学一轮复习考点帮(新高考)(原卷版)
- 物流风险管理策略试题及答案
- jetson 系列移植指南 Jetson-Xavier-NX-and-Jetson-TX2-Series-Interface-Comparison-Migration-Application-Note-v1.0
- 高效复习CPMM试题及答案
- 国际物流师考试的案例分析题试题及答案
- 2024年CPMM考前冲刺策略与试题及答案
- 2024年国际物流师的考试题目解析试题及答案
- 际物流师考试中的重要法规试题及答案
- 2025年湖北省八市高三(3月)联考物理试卷(含答案详解)
- 有效咳嗽咳痰课件
- 医院感染暴发及处理课件
- 2024《整治形式主义为基层减负若干规定》全文课件
- 医保药品管理制度
- DZ∕T 0227-2010 地质岩心钻探规程(正式版)
- 《国际关系学入门》课件第九章 对外政策
- FANUC机器人培训教程(完成版)(PPT134页)
- 认识昆虫.ppt
- 《职工带薪年休假条例》全文
- 坚持政府主导下的三医联动改革——福建省三明市公立医院
评论
0/150
提交评论