




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解直角三角形一、选择题1.(2016苏州8,3分)如图,长4m的楼梯AB的倾斜角∠ABD为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°免责调整后的楼梯AC的长为A.B.C.D.答案:B2.(2016江苏苏州,8,3分)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2mB.2mC.(2﹣2)mD.(2﹣2)m【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.二、填空题3.(2016,14,4分)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A==,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.4.(2016上海,17,4分)如图3,航拍无人机从A处测得一幢建筑物顶部B的仰角为30%,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约▲来.(精确到1米,参考数据:≈1.73)【答案】208;5.(2016青海西宁,19,2分)如图7,为保护门源百里油菜花海,由“芬芳浴”游客中心处修建通往百米观景长廊的两条栈道,.若,,则游客中心到观景长廊的距离的长约为米.(,) 【答案】606.(2016湖北十堰,15,3分)在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为(30+10)米.(结果保留根号)【分析】如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程即可解决问题.【解答】解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10.∴河的宽度为(30+10)米.7.(2016新疆内高班,14,5分)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60×=30(m).故答案为:30.三、解答题1.(2016四川宜宾,21,8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.(2016吉林长春,19,7分)如图,为了测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度.(结果精确到0.1米.)【参考数据:,,】解:过D作直线DE∥BC与AB交于点E,△ADE中,tan∠ADE=tan47°=QUOTE=QUOTE=1.072AE≈28.9EB=1.5∴AB=30.4(2016湖南娄底,22,8分)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)【分析】设DH=x米,由三角函数得出=x,得出BH=BC+CH=2+x,求出AH=BH=2+3x,由AH=AD+DH得出方程,解方程求出x,即可得出结果.【解答】解:设DH=x米,∵∠CDH=60°,∠H=90°,∴CH=DH•sin60°=x,∴BH=BC+CH=2+x,∵∠A=30°,∴AH=BH=2+3x,∵AH=AD+DH,∴2+3x=20+x,解得:x=10﹣,∴BH=2+(10﹣)=10﹣1≈16.3(米).答:立柱BH的长约为16.3米.22.(2016四川资阳,22,9分)如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)【分析】(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°=,进而求出答案;(2)根据题意结合已知得出当点B在A′的南偏东75°的方向上,则A′B平分∠CBA,进而得出等式求出答案.【解答】解:(1)如图所示:延长BA,过点C作CD⊥BA延长线与点D,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°===,解得:AC=40,答:点A到岛礁C的距离为40海里;(2)如图所示:过点A′作A′N⊥BC于点N,可得∠1=30°,∠BA′A=45°,A′N=A′E,则∠2=15°,即A′B平分∠CBA,设AA′=x,则A′E=x,故CA′=2A′N=2×x=x,∵x+x=40,∴解得:x=20(﹣1),答:此时“中国海监50”的航行距离为20(﹣1)海里.24.(2016湖南湘西,24,8分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)直接利用tan50°=,进而得出AC的长,求出AB的长即可;(2)直接利用tan50°=,进而得出BC的长求出答案.【解答】解:(1)由题意可得:tan50°==≈1.2,解得:AC=24,∵∠BDC=45°,∴DC=BC=20m,∴AB=AC﹣BC=24﹣20=4(m),答:建筑物BC的高度为4m;(2)设DC=BC=xm,根据题意可得:tan50°==≈1.2,解得:x=25,答:建筑物BC的高度为25m.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.22.(2016江苏宿迁,19,6分)如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73) 【分析】作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△PAC中利用正切的定义得到8+x=,解得x=4(+1)≈10.92,即AC≈10.92,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险. 【解答】解:没有触礁的危险.理由如下: 作PC⊥AB于C,如图,∠PAC=30°,∠PBC=45°,AB=8, 设PC=x, 在Rt△PBC中,∵∠PBC=45°, ∴△PBC为等腰直角三角形, ∴BC=PC=x, 在Rt△PAC中,∵tan∠PAC=, ∴AC=,即8+x=,解得x=4(+1)≈10.92, 即AC≈10.92, ∵10.92>10, ∴海轮继续向正东方向航行,没有触礁的危险. 【点评】本题考查了解直角三角形的应用﹣方向角问题:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.19.(2016河南,19,9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为370,旗杆底部B的俯角为450,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin370≈0.60,con370≈0.80,tan370≈0.75)解:过点C作CD⊥AB于D,则DB=9,………1分在Rt△CBD中,∠BCD=450,∴CD=BD=9………3分在Rt△ACD,∠ACD=370,∴AD=CD×tan370≈9×0.75=6.75…………6分∴AB=AD+BD6.75+9=15.75,………………7分(15.75-2.25)÷45=0.3(米/秒)答:国旗以0.3米/秒的速度匀速上升。……9分24.(2016湖南衡阳,24,10分)在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?【分析】(1)求出OC,由题意r≥OC,由此即可解决问题.(2)作AM⊥BC于M,求出AM即可解决问题.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,先列出方程求出x,再求出BN、AN利用不等式解决问题.【解答】解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.21.(2016•四川达州,21,8分)如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)【分析】(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,首先证明△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.【解答】解:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36×=24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t==小时=20分钟,∴轮船照此速度与航向航向,上午11::00到达海岸线.(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12,∠BCE=30°,∴BE=6,EC=6≈10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.【点评】本题考查方向角、解直角三角形等知识,解题的关键是添加辅助线构造直角三角形,由数量关系推出∠BAC=30°,属于中考常考题型.22.(2016•四川乐山,22,10分)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.【分析】设巡逻船从出发到成功拦截所用时间为x小时,由题意得出∠ABC=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,由三角函数得出BD、AD的长度,得出CD=10x+6.在Rt△ACD中,由勾股定理得出方程,解方程即可.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由三角函数和勾股定理得出方程是解决问题的关键.26.(2016•四川凉山州,26,5分)如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有2个.【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长为,比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,CF=2<,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.【点评】本题考查了解直角三角形和点到直线的距离,解题的关键是先求出各边上点到BD的最大距离比较得出答案.19.(2016新疆生产建设兵团,19,8分)如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【专题】探究型.【分析】根据题意可以得到BD的长度,从而可以求得AB的高度.【解答】解:由题意可得,CD=16米,∵AB=CB•tan30°,AB=BD•tan45°,∴CB•tan30°=BD•tan45°,∴(CD+DB)×=BD×1,解得BD=8,∴AB=BD•tan45°=()米,即旗杆AB的高度是()米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是明确题意,找出所求问题需要的条件.21.(2016随州,21,8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度.已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在E点出测得雕像顶端A的仰角为60°.求雕像AB的高度.【答案】解:过点E作EF⊥AC于F,EG⊥CD于G.………1分在RtΔDEG中,∵DE=1620,∠D=30°∴EG=DE·sin∠D=1620×……………3分又∵BC=857.5,CF=EG∴BF=BC-CF=47.5在RtΔBEF中,∵tan∠BEF=,∴EF=RtΔAEF中,∠AEF=60°,设AB=x,∵tan∠AEF=∴AF=EF·tan∠AEF即x+47.5=(×47.5解得x=95……………7分答:雕像AB的高度为95尺………8分20.(2016四川内江,20,9分)如图8,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A,B两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).北C北CAB30°45°图8北CAB30°45°答案图H解:如图,过点C作CH⊥AB于H,则△BCH是等腰直角三角形.设CH=x,则BH=x,AH=CH÷30°=x. 2分∵AB=200,∴x+x=200.∴x==100(-1). 4分∴BC=x=100(-). 6分∵两船行驶4小时相遇,∴可疑船只航行的平均速度=100(-)÷4=45(-). 8分答:可疑船只航行的平均速度是每小时45(-)海里. 9分22.(2016四川泸州,22,8分)如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:,,,计算结果用根号表示,不取近似值).【答案】解:过点作于点,于点,则四边形是矩形,∵斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 液力机械的流体动力特性分析考核试卷
- 3-9数据选择器2电子课件教学版
- 笔的制造业国际市场拓展与贸易实务考核试卷
- 皮革物理性能测试方法与设备考核试卷
- 教案新人教版高一语文必修1第四单元训练卷
- 煤炭直接燃烧与污染控制技术考核试卷
- 一年级数学上册《常考试题》
- 慢性阻塞性肺疾病诊断与治疗 2
- 山东省平原县第一中学2024-2025学年高一下学期3月月考 数学试题【含答案】
- 临床骨折救治应急预案
- 北师大版七年级下册数学期中试题带答案
- 【MOOC】构造地质学-中国地质大学(武汉) 中国大学慕课MOOC答案
- 甲状腺结节射频消融治疗
- 【MOOC】模拟电子电路与技术基础-西安电子科技大学 中国大学慕课MOOC答案
- 天车技能培训
- 会计岗位招聘笔试题及解答(某大型国企)2025年
- 陕西省西安铁一中2025届高考语文二模试卷含解析
- 病理性近视怎治疗
- 儿科护理一科一品
- GB/T 44804-2024声学自由场条件下18岁至25岁耳科正常人听力阈值的统计分布
- 医院感染课件教学课件
评论
0/150
提交评论