下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
..〔一〕正三角形类型在正ΔABC中,P为ΔABC一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。经过这样旋转变化,将图〔1-1-a〕中的PA、PB、PC三条线段集中于图〔1-1-b〕中的一个ΔP'CP中,此时ΔP'AP也为正三角形。例1.如图:〔1-1〕:设P是等边ΔABC的一点,PA=3,PB=4,PC=5,∠APB的度数是________.〔二〕正方形类型在正方形ABCD中,P为正方形ABCD一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。经过旋转变化,将图〔2-1-a〕中的PA、PB、PC三条线段集中于图〔2-1-b〕中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。例2.如图〔2-1〕:P是正方形ABCD一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。8〔三〕等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=Rt∠,P为ΔABC一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。经过这样旋转变化,在图〔3-1-b〕中的一个ΔP'CP为等腰直角三角形。例3.如图,在ΔABC中,∠ACB=900,BC=AC,P为ΔABC一点,且PA=3,PB=1,PC=2。求∠BPC的度数。平移、旋转和翻折是几何变换中的三种根本变换。所谓几何变换就是根据确定的法那么,对给定的图形(或其一局部)施行某种位置变化,然后在新的图形中分析有关图形之间的关系.这类实体的特点是:结论开放,注重考察学生的猜测、探索能力;便于与其它知识相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下,近几年中考加大了这方面的考察力度,特别是2006年中考,这一局部的分值比前两年大幅度提高。为帮助广阔考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面以近几年中考题为例说明其解法,供大家参考。一.平移、旋转平移:在平面,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移."一定的方向〞称为平移方向,"一定的距离〞称为平移距离。平移特征:图形平移时,图形中的每一点的平移方向都一样,平移距离都相等。旋转:在平面,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。例1.如图,将ΔABC绕顶点A顺时针旋转60º后得到ΔAB´C´,且C´为BC的中点,那么C´D:DB´=〔〕A.1:2B.1:C.1:D.1:3点评:本例考察灵活运用旋转前后两个图形是全等的性质、等边三角形的判断和含30º角的直角三角形的性质的能力,解题的关键是发现ΔAC´C是等边三角形.二、翻折翻折:翻折是指把一个图形按某一直线翻折180º后所形成的新的图形的变化。翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。翻折在三大图形运动中是比拟重要的,考察得较多.另外,从运动变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。例2.如图,将矩形ABCD沿AE折叠,假设∠BAD′=30°,那么∠AED′等于〔〕A.30° B.45°C.60° D.75°点评:本例考察灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现∠EAD=∠EAD′,∠AED=∠AED′点评:图形沿某条线折叠,这条线就是对称轴,利用轴对称的性质并借助方程的的知识就能较快得到计算结果。由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考察到了.因此在平时抓住这三种运动的特征和根本解题思路来指导我们的复习,将是一种事半功倍的好方法。平移与旋转实际上是一种全等变换,由于具有可操作性,因而是考察同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的容。题型多以填空题、计算题呈现。在解答此类问题时,我们通常将其转换成全等求解。根据变换的特征,找到对应的全等形,通过线段、角的转换到达求解的目的。例1:如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心,逆时针旋转90°至ED,连结AE、CE,那么△ADE的面积是〔〕A1B2C3D不能确定点评:明确△ADE的边AD上的高的概念不要误写成DE,作梯形高是常见的解题方法之一。变式题1:如图,△ABC中AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB、AC于点E、F,给出以下五个结论:〔1〕AE=CF〔2〕∠APE=∠CPF〔3〕△EPF是等腰直角三角形〔4〕EF=AP〔5〕S四边形AEPF=S△ABC÷2,当∠EPF在△ABC绕顶点P旋转时〔点E不与A、B重合〕上述结论中始终正确的序号有___例2D、E为AB的中点,将△ABC沿线段DE折叠,使点A落在点F处。假设∠B=50°,那么∠BDF=___点评:几何变换没有可套用的模式,关键是同学们要善于多角度、多层次、多侧面地思考问题,观察问题、分析问题。变式题2:如图,矩形纸片ABCD,AB=2,∠ADB=30°,将它沿对角线BD折叠〔使△ABD和△EBD落在同一平面〕那么A、E两点间的距离为___旋转具有以下特征:〔1〕图形中的每一点都绕着旋转中心旋转了同样大小的角度;〔2〕对应点到旋转中心的距离相等;〔3〕对应角、对应线段相等;〔4〕图形的形状和大小都不变。利用旋转的特征,可巧妙解决很多数学问题,如一.求线段长.例:如图,长方形ABCD的周长为20,AB=4,点E在BC上,且AE⊥EF,AE=EF,求CF的长。二.求角的大小例:如图,在等边△ABC中,点E、D分别为AB、BC上的两点,且BE=CD,AD与CE交于点M,求∠AME的大小。三.进展几何推理例:如图,点F在正方形ABCD的边BC上,AE平分∠DAF,请说明DE=AF-BF成立的理由。数学思想是解数学题的精华和重要的指导方法,在平移和旋转中的应用也相当的广泛,一般可以归结为两种思想——对称的思想和旋转的思想,具体的分析如下:1、对称的思想:在平移、旋转、对称这些概念中,对称这一概念非常重要.它包括轴对称、旋转对称、中心对称.对称是一种种要的思想方法,在解题的应用非常广泛.例:观察图中所给的图案,它可以看成由哪个较根本的图形经过哪些运动变换产生的?它是不是轴对称图形?旋转对称图形?中心对称图形?分析:这是一个涉及轴对称平移、旋转的综合性例子。解题思路主要通过直观观察取得。这个图案较根本的图形是正方形,一个小正方形沿对角线方向平移一个对角线长、两个对角线长后得一正方形串,然后在串的轴线上找一点O为旋转中心,旋转三个90°后得到题目中给出的图案,整个过程如下图。这个图形是轴对称、旋转对称.中心对称图形。方法探究:这里的较根本图形也可以看成线段。一线段经平移、旋转后得一正方形,然后重复上面的过程。2、旋转的思想:旋转也是图形的一种根本变换,通过图形旋转变换,从而将一些简单的平面图形按要求旋转到适当的位置,使问题获得简单的解决,它是一种要的解题方法。例:如图,正方形ABCD一点P,∠PAD=∠PDA=15°,连结PB、PC,请问:ΔPBC是等边三角形吗?为什么?1.如图,△ABC是等腰直角三角形,BC为斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,请求出PP′的长.2.如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形△BCD,△ABD绕点D按顺时针方向旋转60°后得到△ECD,假设AB=3,AC=2,求∠BAD的度数与AD的长.3.如图,点O是等边△ABC一点,∠AOB=110°,∠BOC=.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.〔1〕试说明:△COD是等边三角形;〔2〕当=150°时,试判断△AOD的形状,并说明理由;〔3〕探究:当为多少度时,△AOD是等腰三角形?4.如图在□ABCD中,E、F分别是AD、BC边上的任意两点,,那么S阴影=。5.如图,在□ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.6.如图①,在四边形ABCD中,AB=CD,点E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,那么∠BME=∠E〔不需证明〕.小明的思路是:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠E.
〔1〕:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
〔2〕:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,假设∠EFC=60°,连接GD,判断△AGD的形状并证明.7.如图,在ΔABC中,AB=AC,AD是ΔABC的角平分线,点O位AB的中点,连接DO并延长到点E,使OE=OD,连接AE、BE〔1〕求证:四边形AEBD是矩形;
〔2〕当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.8.如图,平行四边形中,,,.对角线相交于点,将直线绕点顺时针旋转,分别交于点.〔1〕证明:当旋转角为时,四边形是平行四边形;〔2〕试说明在旋转过程中,线段与总保持相等;〔3〕在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时绕点顺时针旋转的度数.AABCDOFE9.在△ABC中,AB=AC,∠BAC=α〔0°<α<60°〕,将线段BC绕点B按逆时针方向旋转60°得到线段BD。〔1〕如图1,直接写出∠ABD的大小〔用含α的式子表示〕;〔2〕如图2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年叉车租赁服务详细协议模板版B版
- 让数字化成为战略和业务的低层支撑(分享)
- 2024年商用空调安装工程协议样本版B版
- 江南大学《成衣工艺学》2023-2024学年第一学期期末试卷
- 佳木斯大学《食品分析概论》2021-2022学年第一学期期末试卷
- 2024尊贵皮鞋采购与销售合同版B版
- 2024年企业人才培育合作框架合同
- 暨南大学《国际法》2023-2024学年第一学期期末试卷
- 济宁学院《商务英语水平测试标准与训练I》2021-2022学年第一学期期末试卷
- 汽车改装技术 课件 2.1汽车前排座椅驱动方式改装
- 《勇敢的心》电影赏析
- 《神经重症患者肠内营养护理专家共识》解读课件
- 《地表水水质自动监测站(重金属)验收技术规范》(征求意见稿)
- 中国陶瓷史学习通超星期末考试答案章节答案2024年
- 《化工环保与安全》大作业
- GB/T 10433-2024紧固件电弧螺柱焊用螺柱和瓷环
- (新版)高级考评员职业技能鉴定考试题库(含答案)
- 1.1+社会主义在中国的确立(教案)-【中职专用】高一思想政治《中国特色社会主义》同步课堂课件(高教版2023·基础模块)
- 辽宁省沈阳市重点中学2024年高三高考模拟考试(二)数学试题
- 主题一 第4课 走进敬老院(教学设计)教科版六年级下册综合实践活动
- 2024-2030年全球及中国航空货运服务行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
评论
0/150
提交评论