版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题16图形变换中的重要模型之旋转模型几何变换中的旋转问题是历年中考考查频率高且考查难度较高,综合性强,通常有线段、三角形、(特殊)平行四边形的旋转问题。在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,再结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。模型1.三角形中的旋转模型1)常规计算型例1.(2020·四川绵阳·中考真题)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△,当恰好经过点D时,△CD为等腰三角形,若B=2,则A=()A. B.2 C. D.变式1.(2022·山西·中考真题)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.2)最值(范围)型例1.(2022·江苏常州·一模)如图,在Rt△ABC和Rt△CDE中,∠BAC=∠DCE=90°,AB=AC=4,CD=CE=2,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是______.变式1.(2021·四川成都·中考真题)在中,,将绕点B顺时针旋转得到,其中点A,C的对应点分别为点,.(1)如图1,当点落在的延长线上时,求的长;(2)如图2,当点落在的延长线上时,连接,交于点M,求的长;(3)如图3,连接,直线交于点D,点E为的中点,连接.在旋转过程中,是否存在最小值?若存在,求出的最小值;若不存在,请说明理由.3)综合证明型例1.(2021·黑龙江·中考真题)在等腰中,,是直角三角形,,,连接,点是的中点,连接.(1)当,点在边上时,如图①所示,求证:.(2)当,把绕点逆时针旋转,顶点B落在边AD上时,如图②所示,当,点B在边AE上时,如图③所示,猜想图②、图③中线段和又有怎样的数量关系?请直接写出你的猜想,不需证明.变式1.(2021·山东潍坊·中考真题)如图1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D为△ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:△BDA≌△BFE;(2)①CD+DF+FE的最小值为;②当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.模型2.平行四边形中的旋转模型1)常规计算型例1.(2022·浙江宁波·一模)如图,一副三角板如图1放置,,顶点重合,将绕其顶点旋转,如图2,在旋转过程中,当,连接,,此时四边形的面积是________.变式1.(2022·广东广州·一模)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为___.2)最值(范围)型例1.(2022·广东·深圳九年级阶段练习)如图,在平行四边形ABCD中,,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是_____.变式1.(2022·河南洛阳·一模)如图,在平行四边形ABCD中,,,,点E在线段BC上运动(含B、C两点).连接AE,以点A为中心,将线段AE逆时针旋转60°得到AF,连接DF,则线段DF长度的最小值为______.3)分类讨论型例1.(2022·江西·寻乌县二模)如图,在平行四边形中,,,.点为边上任意一点,连接,将绕点逆时针旋转得到线段.若点恰好落在平行四边形的边所在的直线上,则的长为______________.变式1.(2022·江苏·九年级专题练习)在平行四边形ABCD中,AB=5,BC=10,高AH=4,点E是边AD上任意一点,现将点B绕着点E逆时针旋转90°到点,若点恰好在平行四边形的边上,则AE=______.4)综合证明型例1.(2022·广西·九年级期中)如图,在中,,将绕顶点A逆时针旋转至,此时点D在上,连接,线段分别交于点H、K,则下列四个结论中:①;②是等边三角形;③;④当时,;正确的是(
)A.①②④ B.①③④ C.②③④ D.①②③变式1.(2022·山西阳泉·一模)综合与实践【问题背景】如图1,平行四边形ABCD中,∠B=60°,AB=6,AD=8.点E、G分别是AD和DC边的中点,过点E、G分别作DC和AD的平行线,两线交于点F,显然,四边形DEFG是平行四边形.【独立思考】(1)线段AE和线段CG的数量关系是:______.(2)将平行四边形DEFG绕点D逆时针旋转,当DE落在DC边上时,如图2,连接AE和CG.①求AE的长;②猜想AE与CG有怎样的数量关系,并证明你的猜想;【问题解决】(3)将平行四边形DEFG继续绕点D逆时针旋转,当A,E,F三点在同一直线上时(如图3),AE与CG交于点P,请直接写出线段CG的长和∠APC的度数.模型3.菱形中的旋转模型1)常规计算型例1.(2022·安徽黄山·二模)如图,在菱形ABCD中,AC,BD相交于点O,OD=2,将BC绕点B逆时针旋转得到BE,交CD于点F,且使得DE⊥BD.若AC=4DE,则CF=___.变式1.(2022·安徽·模拟预测)如图,将边长为3的菱形绕点逆时针旋转到菱形的位置,使点落在上,与交于点.若,则的长为_______.2)最值(范围)型例1.(2022·山东济宁·模拟预测)如图,菱形的边长为是边的中点,是边上的一个动点,将线段绕着逆时针旋转,得到,连接,则的最小值为(
)A. B. C. D.变式1.(2022·江苏苏州·校联考一模)如图,菱形ABCD的边长为,∠ABC=60°,对角线AC、BD交于点O.点E为直线AD上的一个动点,连接CE,将线段EC绕点C顺时针旋转∠BCD的角度后得到对应的线段CF(即∠ECF=∠BCD),DF长度的最小值为_________.3)综合证明型例1.(2022·江苏南京·模拟预测)【探究发现】(1)如图1,正方形ABCD两条对角线相交于点O,正方形与正方形ABCD的边长相等,在正方形绕点O旋转过程中,边交边AB于点M,边交边BC于点N.①线段BM、BN、AB之间满足的数量关系是________;②四边形OMBN与正方形ABCD的面积关系是________;【类比探究】(2)如图2,若将(1)中的“正方形ABCD”改为“含60°的菱形ABCD”,即,且菱形与菱形ABCD的边长相等.当菱形绕点O旋转时,保持边交边AB于点M,边交边BC于点N.请猜想:①线段BM、BN与AB之间的数量关系是_________________;②菱形OMBN与菱形ABCD的面积关系是________;请你证明其中的一个猜想.【拓展延伸】(3)如图3,把(2)中的条件“”改为“”,其他条件不变,则①________;(用含α的式子表示)②________.(用含α的式子表示)变式1.(2022·重庆·九年级统考期中)如图,在菱形和菱形中,点,,在同一条直线上,是线段的中点,连接,.(1)如图1,探究与的位置关系,写出你的猜想并加以证明;(2)如图1,若,,求菱形的面积.(3)如图2,将图1中的菱形绕点顺时针旋转,使菱形的边恰好与菱形的边在同一条直线上,若,请直接写出与的数量关系.模型4.矩形中的旋转模型1)常规计算型例1.(2022·江西·统考三模)如图,矩形ABCD中,,,将矩形ABCD绕着点A顺时针旋转得到矩形AFGE,当点F落在边CD上时,连接BF、DE,则(
)A. B. C. D.变式1.(2022·江苏无锡·校考一模)如图,在矩形ABCD中,AB=5,AD=4,将矩形ABCD绕点A逆时针旋转得到矩形AB′C′D′,AB′交CD于点E,且DE=B′E,则AE的长为_____.2)最值(范围)型例1.(2022·广东广州·中考真题)如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP',连接PP',CP'.当点P'落在边BC上时,∠PP'C的度数为________;当线段CP'的长度最小时,∠PP'C的度数为________变式1.(2022·江苏·江阴市华士实验中学一模)如图,在矩形ABCD中,,,点P为边AD上一个动点,连接CP,点P绕点C顺时针旋转得到点,连接并延长到点E,使,以CP、CE为邻边作矩形PCEF,连接DE、DF,则和面积之和的最小值为______.3)分类讨论型例1.(2022·江苏·一模)如图,将矩形ABCD绕点A顺时针旋转θ(0°≤θ≤360°),得到矩形AEFG.(1)当点E在BD上时,求证:AF∥BD;(2)当GC=GB时,求θ;(3)当AB=10,BG=BC=13时,求点G到直线CD的距离.4)综合证明型例1.(2022·重庆·一模)矩形ABCD中.∠ADB=30°,△AEF中,∠AFE=90°,∠AEF=30°,AEBD.连接EC,点G是EC中点.将△AEF绕点A顺时针旋转α(0°<α<360°).(1)如图1,若A恰好在线段CE延长线上,CD=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在线段EC上,连接BG.证明:2(GC﹣GB)DC;(3)如图3,若点F恰好落在线段BA延长线上,M是线段BC上一点,3BM=CM,P是平面内一点,满足∠MPC=∠DCE,连接PF,已知CD=2,求线段PF的取值范围.变式1.(2022·四川·眉山市东坡区模拟预测)如图,Rt△ABE中,∠B=90°,AB=BE,将△ABE绕点A逆时针旋转45°,得到△AHD,过D作DC⊥BE交BE的延长线于点C,连接BH并延长交DC于点F,连接DE交BF于点O.下列结论:①DE平分∠HDC;②DO=OE;③H是BF的中点;④BC-CF=2CE;⑤CD=HF,其中正确的有(
)A.5个 B.4个 C.3个 D.2个模型5.正方形中的旋转模型1)常规计算型例1.(2022·河南·平顶山市模拟预测)如图,正方形ABCD的顶点B在原点,点D的坐标为(4,4),将AB绕点A逆时针旋转60°,使点B落在点B′处,DE⊥BB′于点E,则点E的坐标为()A.B.C.D.变式1.(2022·辽宁辽宁·中考真题)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为_______.2)最值(范围)型例1.(2022·江苏扬州·三模)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是(
)A.4 B.4 C.5 D.2变式1.(2022·安徽合肥·二模)正方形中,,点E为边上一动点(不与A、B重合),将绕点D逆时针旋转90°得到,过E作交于点G.则的最小值为(
).A.2 B. C. D.33)路径(轨迹)型例1.(2022·浙江·九年级期末)如图所示,正方形ABCD的边长为4,点E为线段BC上一动点,连结AE,将AE绕点E顺时针旋转90°至EF,连结BF,取BF的中点M,若点E从点B运动至点C,则点M经过的路径长为()A.2 B. C. D.4变式1.(2022·山西·九年级专题练习)如图,已知正方形ABCD的边长为,点O为正方形的中心,点F为边AB的中点,点G为线段AF上一动点,直线GO交CD于点H,过点D作,垂足为点E,当点G从点A运动到点F时,点E所经过的路径长是(
)A. B. C. D.4)分类讨论型例1.(2022·云南昆明·统考二模)如图,大正方形中,,小正方形中,,在小正方形绕点旋转的过程中,当,,三点共线时,线段的长为_______.变式1.(2022·湖北模拟预测)如图,以AB为边作边长为8的正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8,若点P从点A出发,沿A→B→C→D的线路,向D点运动,点Q只能在线段AD上运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长为_____.5)综合证明型例1.(2022·辽宁盘锦·中考真题)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,P为EF中点,连接AF,G为AF中点,连接PG,DG,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG与PG的关系为;(2)如图2,当α=90°时①求证:△AGD≌△FGM;②(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.变式1.(2022·南充·中考真题)如图,正方形边长为1,点E在边上(不与A,B重合),将沿直线折叠,点A落在点处,连接,将绕点B顺时针旋转得到,连接.给出下列四个结论:①;②;③点P是直线上动点,则的最小值为;④当时,的面积.其中正确的结论是_________.(填写序号)课后专项训练1.(2022·浙江·九年级期末)如图,在中,,,将点绕点逆时针旋转得到点,点落在线段上,在线段BE上取点,使,连结,,则的长为(
)A.2 B. C. D.2.(2022·河南·模拟预测)如图,在菱形OBCD中,OB=1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90°,得到菱形OB′C′D′,则点C′的坐标为()A.(,) B.(,-) C.(,-) D.(,)4.(2022·山东·滕州市一模)在矩形ABCD中,AD=2AB=4,E为AD的中点,一块足够大的三角板的直角顶点与E重合,将三角板绕点E旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点M、N,设∠AEM
=α(0°<α<90°),给出四个结论:①AM=CN
②∠AME=∠BNE
③BN-AM=2
④.上述结论中正确的个数是A.1 B.2 C.3 D.45.(2020·湖北孝感·中考真题)如图,点在正方形的边上,将绕点顺时针旋转到的位置,连接,过点作的垂线,垂足为点,与交于点.若,,则的长为(
)A. B. C.4 D.6.(2022·四川眉山·中考真题)如图,四边形为正方形,将绕点逆时针旋转至,点,,在同一直线上,与交于点,延长与的延长线交于点,,.以下结论:①;②;③;④.其中正确结论的个数为(
)A.1个 B.2个 C.3个 D.4个7.(2022·江苏扬州·三模)如图,在等边△ABC和等边△CDE中,AB=6,CD=4,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是______.8.(2022·山东济南·九年级统考期末)如图,在□ABCD中,AB=5,AD=3,∠A=60°,E是边AD上且AE=2DE,F是射线AB上的一个动点,将线段EF绕点E逆时针旋转60°,得到EG,连接BG、DG,则BG-DG的最大值为________.9.(2022·江苏·南京市花园中学模拟预测)中,,,,对角线AC,BD交于点O,将绕点O顺时针旋转,使点D落在AD上处,点C落在处,交AD于点P,则的面积是___________.10.(2022·山西·九年级专题练习)如图,菱形ABCD中,AB=12,∠ABC=60°,点E在AB边上,且BE=2AE,动点P在BC边上,连接PE,将线段PE绕点P顺时针旋转60°至线段PF,连接AF,则线段AF长的最小值为___.11.(2022·新疆·中考真题)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心将绕点D顺时针旋转与恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若,则______.12.(2021·江苏宿迁·中考真题)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.13.(2022·江苏南通·中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.(1)当点E在上时,作,垂足为M,求证;(2)当时,求的长;(3)连接,点E从点B运动到点D的过程中,试探究的最小值.14.(2022·黑龙江齐齐哈尔·中考真题)综合与实践数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.如图①,在矩形ABCD中,点E、F、G分别为边BC、AB、AD的中点,连接EF、DF,H为DF的中点,连接GH.将△BEF绕点B旋转,线段DF、GH和CE的位置和长度也随之变化.当△BEF绕点B顺时针旋转90°时,请解决下列问题:(1)图②中,AB=BC,此时点E落在AB的延长线上,点F落在线段BC上,连接AF,猜想GH与CE之间的数量关系,并证明你的猜想;(2)图③中,AB=2,BC=3,则;(3)当AB=m,BC=n时..(4)在(2)的条件下,连接图③中矩形的对角线AC,并沿对角线AC剪开,得△ABC(如图④).点M、N分别在AC、BC上,连接MN,将△CM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 意略明京东健康2024布局黄金赛道击破核心靶点-从多维视角出发的偏头痛行业机会洞察报告
- 中考语文一轮复习:议论文知识清单及训练
- 市政工程技术专业毕业论文08486
- 洛阳2024年统编版小学5年级英语第3单元真题
- 生活现象之热现象(二)-2023年中考物理重难点题型专项突破
- 2023年磨边轮资金筹措计划书
- 强化和改进思想政治-2019年范文
- 2024年AG13电喷汽车发动机项目资金需求报告代可行性研究报告
- 2024年航空地面试验设备项目投资申请报告代可行性研究报告
- 【苏科】期末模拟卷01【第1-5章】
- 2023年全国中学生英语能力竞赛初三年级组试题及答案
- 部编版道德与法治九年级上册 8.2 共圆中国梦 教学设计
- 幼儿《教育心理学》模拟题:情景题
- 学生对教师评价表(共8页)
- (完整版)青年就业创业见习基地汇报材料(完整版)
- 月光(羽泉)原版五线谱钢琴谱正谱乐谱.docx
- 660MW机组空预器声波吹灰器可行性研究报告最新(精华版)
- 控制柜安装施工方案
- 动车组火灾检测(报警)系统
- 装饰施工技术标准及要求
- 2018秋七年级虎外考试卷英语试卷
评论
0/150
提交评论