2023年中考数学常见几何模型全归纳(全国通用版):专题09 最值模型-将军饮马(原卷版)_第1页
2023年中考数学常见几何模型全归纳(全国通用版):专题09 最值模型-将军饮马(原卷版)_第2页
2023年中考数学常见几何模型全归纳(全国通用版):专题09 最值模型-将军饮马(原卷版)_第3页
2023年中考数学常见几何模型全归纳(全国通用版):专题09 最值模型-将军饮马(原卷版)_第4页
2023年中考数学常见几何模型全归纳(全国通用版):专题09 最值模型-将军饮马(原卷版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题09最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。在各类考试中都以中高档题为主,中考说明中曾多处涉及。本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:【最值原理】两点之间线段最短。上图中A’是A关于直线m的对称点。例1.(2022·湖南娄底·中考真题)菱形的边长为2,,点、分别是、上的动点,的最小值为______.例2.(2022·四川眉山·中考真题)如图,点为矩形的对角线上一动点,点为的中点,连接,,若,,则的最小值为________.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营.他总是先去营,再到河边饮马,之后,再巡查营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点关于直线的对称点,连结与直线交于点,连接,则的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线上另取任一点,连结,,,∵直线是点,的对称轴,点,在上,(1)∴__________,_________,∴____________.在中,∵,∴,即最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点为与的交点,即,,三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形的边长为4,为的中点,是上一动点.求的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点与关于直线对称,连结交于点,则的最小值就是线段的长度,则的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂的最短路程为_____.(4)如图⑥,在边长为2的菱形中,,将沿射线的方向平移,得到,分别连接,,,则的最小值为____________.模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A处,现要过河去往B点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN长度恒定,只要求AM+NB最小值即可.问题在于AM、NB彼此分离,所以首先通过平移,使AM与NB连在一起,将AM向下平移使得M、N重合,此时A点落在A’位置(图2).问题化为求A’N+NB最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1图2图3【最值原理】两点之间线段最短。例1.(2022·重庆中考模拟)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=______.例2.(2022·广西·二模)已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,则AM+BN的最小值为(

)A.2 B.1+3 C.3+ D.模型3.修桥选址模型【模型解读】已知A、B是两个定点,P、Q是直线m上的两个动点,P在Q的左侧,且PQ间长度恒定,在直线m上要求P、Q两点,使得PA+PQ+QB的值最小。(原理用平移知识解)(1)点A、B在直线m两侧:(2)点A、B在直线m同侧:如图1如图2(1)如图1,过A点作AC∥m,且AC长等于PQ长,连接BC,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。(2)如图2,过A点作AE∥m,且AE长等于PQ长,作B关于m的对称点B’,连接B’E,交直线m于Q,Q向左平移PQ长,即为P点,此时P、Q即为所求的点。【最值原理】两点之间线段最短。例1.(2022.山东青岛九年级一模)如图,已知A(3,1)与B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB最小时,Q点坐标为()A.(,) B.(,) C.(0,0) D.(1,1)例2.(2022·四川自贡·中考真题)如图,矩形中,,是的中点,线段在边上左右滑动;若,则的最小值为____________.例3.(2022·广东·九年级期中)如图,CD是直线x=1上长度固定为1的一条动线段.已知A(﹣1,0),B(0,4),则四边形ABCD周长的最小值为_________________.模型4.求多条线段和(周长)最小值【模型解读】在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)台球两次碰壁模型1)已知点A、B位于直线m,n的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.2)已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.【最值原理】两点之间线段最短。例1.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5 B.3.5 C.4.8 D.6例2.(2022·湖北武汉市·九年级期中)如图,点A在y轴上,G、B两点在x轴上,且G(﹣3,0),B(﹣2,0),HC与GB关于y轴对称,∠GAH=60°,P、Q分别是AG、AH上的动点,则BP+PQ+CQ的最小值是()A.6 B.7 C.8 D.9例3.(2022·湖北青山·八年级期中)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点.(1)求证:△ADC为等边三角形;(2)求PD+PQ+QE的最小值.例4.(2022·山东泰安·中考真题)如图,,点M、N分别在边上,且,点P、Q分别在边上,则的最小值是(

)A. B. C. D.模型5.求两条线段差最大值【模型解读】在一条直线m上,求一点P,使PA与PB的差最大;(1)点A、B在直线m同侧:延长AB交直线m于点P,根据三角形两边之差小于第三边,P’A-P’B<AB,而PA-PB=AB此时最大,因此点P为所求的点。(2)点A、B在直线m异侧:过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’【最值原理】三角形两边之差小于第三边。例1.(2022·四川成都·中考真题)如图,在菱形中,过点作交对角线于点,连接,点是线段上一动点,作关于直线的对称点,点是上一动点,连接,.若,,则的最大值为_________.例2.(2022·河南南阳·一模)如图,已知△ABC为等腰直角三角形,AC=BC=6,∠BCD=15°,P为直线CD上的动点,则|PA-PB|的最大值为____.例3.(2022·江苏·九年级月考)如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为(

)A.160 B.150 C.140 D.130课后专项训练1.(2022·山东泰安·二模)如图,在矩形ABCD中,AB=4,BC=8,点E、F分别是边BC、CD上的动点,且EF=4,点M是EF的中点,点Q是AB的中点,连接PQ、PM,则PQ+PM的最小值为(

)A.10 B. C.8 D.2.(2022·广东广州·二模)如图,在等腰直角三角形ABC中,∠ABC=90°,AB=6,线段PQ在斜边AC上运动,且PQ=2.连接BP,BQ.则△BPQ周长的最小值是(

)A. B. C.8 D.3.(2022·安徽合肥·二模)如图,在矩形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA上的动点(不与端点重合),若四点运动过程中满足AE=CG、BF=DH,且AB=10、BC=5,则四边形EFGH周长的最小值等于(

)A.10 B.10 C.5 D.54.(2022·湖北鄂州·中考真题)如图,定直线MNPQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AEBCDF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为(

)A.24 B.24 C.12 D.125.(2022·山东潍坊·八年级期末)如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.6.(2022·江苏南通·一模)平面直角坐标系xOy中,已知点P(m,m+2),点Q(n,0),点M(1,1),则PQ+QM最小值为_________.7.(2022·江苏南通·一模)如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于点D,点E、F分别是线段AB、AD上的动点,且BE=AF,则BF+CE的最小值为_____.8.(2022·浙江金华·八年级期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图l所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是__;(2)A′B+D′B的最小值为__.9.(2022·贵州遵义·中考真题)如图,在等腰直角三角形中,,点,分别为,上的动点,且,.当的值最小时,的长为__________.10.(2022·广西贺州·中考真题)如图,在矩形ABCD中,,E,F分别是AD,AB的中点,的平分线交AB于点G,点P是线段DG上的一个动点,则的周长最小值为__________.11.(2022·黑龙江·中考真题)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是________.12.(2022·安徽安庆·八年级期末)如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=_____°.13.(2021·山东威海·八年级期中)【源模:模型建立】白日登山望峰火,黄昏饮马傍交河.——《古从军行》唐

李欣诗中隐含着一个有趣的数学问题,我们称之为“将军饮马”问题.关键是利用轴对称变换,把直线同侧两点的折线问题转化为直线两侧的线段问题,从而解决距高和最短的一类问题.“将军饮马”问题的数学模型如图所示:【新模1:模型应用】如图1,正方形的边长为,点在边上,且,为对角线上一动点,欲使周长最小.(1)在图中确定点的位置(要有必要的画图痕迹,不用写画法);(2)周长的最小值为______.【新模2:模型变式】(3)如图2,在矩形中,,,在矩形内部有一动点,满足,则点到,两点的距离和的最小值为______.【超模:模型拓广】(4)如图3,,,.请构造合理的数学模型,并借助模型求的最小值.14.(2022·江苏·南外雨花分校一模)阅读并解答下列问题:老师给出了以下思考题:如图1,在平面直角坐标系xOy中,已知点A(0,3),B(5,1),C(a,0),D(a+2,0),连接AC、CD、DB,求AC+CD+DB的最小值.【思考交流】小明:如图2,先将点A向右平移2个单位长度到点A1,作点B关于x轴的对称点B1,连接A1B1交x轴于点D,将点D向左平移2个单位长度得到点C,连接AC、BD.此时AC+CD+DB的最小值等于A1B1+CD.小颖:如图3,先将点A向右平移2个单位长度到点A1,作点A1关于x轴的的的点A2,连接A2B可以求解.小亮:对称和平移还可以有不同的组合…【尝试解决】在图2中AC+CD+DB的最小值是______

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论