版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新定义型专题(一)专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力(二)解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.(三)考点精讲考点一:规律题型中的新定义例1.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,-1的差倒数是.已知a1=-,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.考点二:运算题型中的新定义例2.对于两个不相等的实数a、b,定义一种新的运算如下,,如:,那么6*(5*4)=.例3.我们定义,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.考点三:探索题型中的新定义例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)(3)判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.()②任意凸四边形一定只有一个准内点.()③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()考点四:阅读材料题型中的新定义阅读材料我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.三、解答题7.在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.(1)判断点M(l,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上,求a,b的值.8.阅读下面的材料:246246-2-2(第23题)在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数的图象为直线,一次函数的图象为直线,若,且,我们就称直线246246-2-2(第23题)解答下面的问题:(1)求过点且与已知直线平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届北京市顺义区杨镇一中高三3月份模拟考试英语试题含解析
- 浙江省宁波市第七中学2025届高考冲刺数学模拟试题含解析
- 福建省厦门市第六中学2025届高三下学期联考英语试题含解析
- 深圳市重点中学2025届高三3月份模拟考试语文试题含解析
- 标准品购销合同范本
- 小产权房销售合同模板
- 2024年生产车间承包合同协议书范本
- 专业建筑工程合同范本汇编
- 房屋租赁合同范本简单版示例
- 技术许可(专利申请权)合同示例
- 案例一动植物细胞模型制作课件人教版生物七年级上册
- 初中《学宪法讲宪法》第八个国家宪法日主题教育课件
- 2024年秋季新人教版八年级上册物理全册教案(2024年新教材)
- 2024年新华师大版七年级上册数学教学课件 第2章 整式及其加减 2.4 整式的加减 2.合并同类项
- 油库设计与管理智慧树知到答案2024年中国石油大学(华东)
- 中医揿针特色进修
- 2024年人教版初三化学(上册)期末试卷及答案(各版本)
- 解读国有企业管理人员处分条例课件
- 2024年二手车转让合同电子版(3篇)
- 部编版四年级上册语文第二单元大单元教学设计
- 中医药创新创业“八段锦”智慧树知到答案2024年浙江中医药大学
评论
0/150
提交评论