因式分解章末重难点题型(举一反三)(浙教版)(原卷版)_第1页
因式分解章末重难点题型(举一反三)(浙教版)(原卷版)_第2页
因式分解章末重难点题型(举一反三)(浙教版)(原卷版)_第3页
因式分解章末重难点题型(举一反三)(浙教版)(原卷版)_第4页
因式分解章末重难点题型(举一反三)(浙教版)(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题因式分解章末重难点题型【浙教版】【考点1因式分解定义】【方法点拨】把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式。【例1】(2019春•青岛期中)下列从左边到右边的变形,属于因式分解的是()A.(3﹣x)(3+x)=9﹣x2 B. C.m4﹣n4=(m2+n2)(m+n)(m﹣n) D.4yz﹣2y2z+z=2y(2z﹣yz)+z【变式1-1】(2019春•成都期中)下列各式,从左到右的变形是因式分解的是()A.a(x+y)=ax+ay B.2x2﹣x=x(2x﹣1) C.x2+4x+4=x(x+4)+4 D.x2﹣9=(x+9)(x﹣9)【变式1-2】(2019春•灵石县期中)下列各式从左到右的变形,是因式分解且分解结果正确的为()A.(a+2)2﹣(a﹣1)2=6a+3 B.x2+x+=(x+)2 C.2x2﹣6x=2x(x﹣6) D.x4﹣16=(x2+4)(x2﹣4)【变式1-3】(2019春•新田县期中)下列各式从左到右的变形中,是因式分解的有()①25x2﹣4y2=(5x+2y)(5x﹣2y);②8x2y4﹣12xy2z=4xy2(2xy2﹣3z);③(x+y)2﹣(x﹣y)2=4xy;④x3y2﹣x5=x3(y+x)(y﹣x);⑤﹣(2x﹣3y)2=﹣4x2+12xy﹣9y2.()A.①②③⑤ B.②③④⑤ C.①②③④ D.①②③④⑤【考点2公因式的概念】【方法点拨】把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.【例2】(2019春•新田县期中)多项式2xmyn﹣1﹣4xm﹣1yn(m,n均为大于1的整数)各项的公因式是()A.4xm﹣1yn﹣1 B.2xm﹣1yn﹣1 C.2xmyn D.4xmyn【变式2-1】(2019春•灌阳县期中)代数式x﹣2是下列哪一组的公因式()A.(x+2)2,(x﹣2)2 B.x2﹣2x,4x﹣6 C.3x﹣6,x2﹣2x D.x2﹣4,6x﹣18【变式2-2】(2019秋•乳山市期中)代数式x4﹣81,x2﹣9与x2﹣6x+9的公因式为()A.x+3 B.(x+3)2 C.x﹣3 D.x2+9【变式2-3】(2019秋•安岳县校级期中)在m(a﹣x)(x﹣b)﹣mn(a﹣x)(b﹣x)中,公因式是()A.m B.m(a﹣x) C.m(a﹣x)(b﹣x) D.(a﹣x)(b﹣x)【考点3提公因式法】【方法点拨】如果一个多项式的各项含有公因式,那末就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法【例3】(2019秋•徐汇区校级期中)(x﹣3y)(x﹣y)﹣(﹣x﹣y)2【变式3-1】(2019秋•西城区校级期中)因式分解:2m(a﹣b)﹣3n(b﹣a)【变式3-2】(2018秋•宁阳县期中)把下列各式分解因式:(1)2a(x﹣y)﹣6b(y﹣x)(2)(a2﹣2a+1)﹣b(a﹣1)(3)2x(y﹣x)+(x+y)(x﹣y)【变式3-3】(2018秋•嘉定区期中)因式分解:3(x+y)(x﹣y)﹣(x﹣y)2.【考点4公式法】【方法点拨】公式法:(1)a2_b2=(a+b)(a-b)(2)a2±2ab+b2=(a±b)2【例4】(2019秋•长宁区期中)因式分解:16x4﹣1【变式4-1】(2019春•港南区期中)把下列多项式因式分解:(1)x2﹣9;(2)4x2﹣3y(4x﹣3y).【变式4-2】(2019春•汨罗市期中)分解因式或计算:(1)(2m﹣n)2﹣169(m+n)2;(2)8(x2﹣2y2)﹣x(7x+y)+xy.(3)40×2+80××1.85+40×2【变式4-3】(2018秋•双阳区校级期中)因式分解:(x2﹣3)2+2(3﹣x2)+1.【考点5提公因式与公式法综合运用】【方法点拨】分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.【例5】(2020春•秦淮区校级期中)因式分解:(1)a3﹣4ab2;(2)(x2+x)2﹣(x+1)2.【变式5-1】(2019春•碑林区校级期中)分解因式:(1)3a2﹣12ab+12b2;(2)25(a+b)2﹣9(a﹣b)2.【变式5-2】(2018秋•杨浦区期中)因式分解:(2x﹣3y)2﹣2(2x﹣3y)(4x+y)+(4x+y)2【变式5-3】(2018秋•天河区校级期中)把下列各式因式分解:(1)12x4﹣6x3﹣168x2(2)a5(2﹣3a)+2a3(3a﹣2)2+a(2﹣3a)3(3)abc(a3+b3+c3+2abc)+(a3b3+b3c3+c3a3)【考点6分组分解法】【方法点拨】将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.【例6】(2018秋•宝山区校级期中)因式分解:x2﹣4xy+4y2﹣3x+6y+2【变式6-1】(2019春•章丘市校级期中)因式分解(1)(x4+y4)2﹣4x4y4(2)x2﹣9y2+4z2+4xz.【变式6-2】(2019秋•乳山市期中)分解因式:(1)(x+1)(x﹣)+;(2)x2﹣y2﹣2x﹣4y﹣3.【变式6-3】(2019春•重庆校级期中)先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)如“3+1”分法:2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2﹣y2﹣x﹣y;(2)分解因式:45am2﹣20ax2+20axy﹣5ay2;(3)分解因式:4a2+4a﹣4a2b﹣b﹣4ab+1.【考点7十字相乘法】【例7】(2019秋•青浦区校级期中)用双十字相乘法分解因式:例:20x2+9xy﹣18y2﹣18x+33y﹣14.∵4×6+5×(﹣3)=9,4×(﹣7)+5×2=﹣18,﹣3×(﹣7)+2×6=33,∴20x2+9xy﹣18y2﹣18x+33y﹣14=(4x﹣3y+2)(5x+6y﹣7).双十字相乘法的理论根据是多项式的乘法,在使用双十字相乘法时,应注意它带有试验性质,很可能需要经过多次试验才能得到正确答案.分解因式6x2﹣5xy﹣6y2﹣2xz﹣23yz﹣20z2=_______.【变式7-1】(2019秋•九龙坡区校级期中)阅读下列村料:由整式的乘法运算知:(ax+b)(cx+d)=acx2+(ad+bc)x+bd.由于我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得acx2+(ad+bc)x+bd=(ax+b)(cx+d).通过观察可知可把acx2+(ad+bc)x+bd中的x看作是未知数,a,b,c,d看作常数的二次三项式;通过观察acx2+(ad+bc)x+bd=(ax+b)(cx+d),可知此种因式分解是把二次三项式的二项式系数ac与常数项bd分别进行适当的分解来凑一次项的系数,此分解过程可以用十字相乘的形式形象地表示成如图1,此分解过程可形象地表述为“坚乘得首、尾,叉乘凑中项,这种分解的方法称为十字相乘法.如:将二次三项式2x2+7x+3的二项式系数2与常数项3分别进行适当的分解,如图2.则2x2+7x+3=(x+3)(2x+1).根据阅读材料解决下列问题:(1)用十字相乘法因式分解:4x2+9x﹣13;(2)用十字相乘法因式分解:2(2a2+1)2﹣3(2a2+1)﹣9;(3)已知x2﹣2x﹣n=(x+a)(x+b)(1≤n≤200),若a、b均为整数,则满足条件的整数n有几个?并说明理由.【变式7-2】(2019秋•巴东县期末)x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子因式分解呢?因为(x+p)(x+q)=x2+(p+q)x+pq,所以,根据因式分解是与整式乘法方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2)上述过程还可以形象的用十字相乘的形式表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项的系数,如图.这样,我们可以得到:x2+3x+2=(x+1)(x+2)利用这种方法,将下列多项式分解因式:(1)x2+7x+10(2)﹣2x2﹣6x+36【变式7-3】(2019春•新田县期中)提出问题:你能把多项式x2+5x+6因式分解吗?探究问题:如图(1)所示,设a,b为常数,由面积相等可得:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,将该式从右到左使用,就可以对形如x2+(a+b)x+ab的多项式进行因式分解即x2+(a+b)x+ab=(x+a)(x+b).观察多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项为两数之和.解决问题:x2+5x+6=x2+(2+3)x+2×3=(x+3)(x+2)运用结论:(1)基础运用:把多项式x2﹣5x﹣24进行因式分解.(2)知识迁移:对于多项式4x2﹣4x﹣15进行因式分解还可以这样思考:将二次项4x2分解成图(2)中的两个﹣4x的积,再将常数项﹣15分解成﹣5与3的乘积,图中的对角线上的乘积的和为﹣4x,就是4x2﹣4x﹣15的一次项,所以有4x2﹣4x﹣15=(2x﹣5)(2x+3).这种分解因式的方法叫做“十字相乘法”.请用十字相乘法进行因式分解:3x2﹣19x﹣14(3)综合运用:灵活运用知识进行因式分解:x3﹣7x+6【考点8利用因式分解判断三角形】【例8】(2019秋•闽清县期中)已知BC=a,AC=b,AB=c,且满足a2+b2+=ac+bc,试判定a,b,c能否构成三角形,如果能,请判定形状,并说明理由.【变式8-1】(2019秋•徐闻县期中)已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.【变式8-2】(2019秋•东营期中)已知a,b,c为△ABC的三条边,若a2+b2+c2=ab+ac+bc,则该△ABC是什么三角形?【变式8-3】(2019秋•仁寿县期中)已知△ABC的三条边分别是a、b、c.(1)判断(a﹣c)2﹣b2的值的正负.(2)若a、b、c满足a2+c2+2b(b﹣a﹣c)=0,判断△ABC的形状.【考点9利用因式分解求值】【例9】(2019秋•孟津县期中)已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.【变式9-1】(2019秋•泰安期中)利用因式分解计算:已知:a+b=4,ab=﹣2,求:a3+a2b+ab2+b3的值.【变式9-2】(2019春•淮北期中)若x=2018,y=2019,z=2020,求2x2+2y2+2z2﹣2xy﹣2xz﹣2yz的值.【变式9-3】(2019秋•鲤城区校级期末)已知a﹣b=1,a﹣c=3.(1)求5b﹣5c+7的值:(2)求a2+b2+c2﹣ab﹣ac﹣bc的值.【考点10因式分解的应用】【例10】(2019秋•乳山市期中)【阅读材料】因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,原式=(x+y+1)2.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.【问题解决】(1)因式分解:1+5(x﹣y)+4(x﹣y)2;(2)因式分解:(a+b)(a+b﹣4)+4;(3)证明:若n为正整数,则代数式(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.【变式10-1】(2019春•太仓市期中)你会对多项式(x2+5x+2)(x2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x2+5x+2)(x2+5x+3)﹣12.解法一:设x2+5x=y,则原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法二:设x2+5x+2=y,则原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法三:设x2+2=m,5x=n,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x2+x﹣4)(x2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x2;(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.【变式10-2】(2019春•邗江区校级期中)对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论