




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
超大跨径桥梁静风荷载分析
0结构的静风荷载作用国内外桥梁的建设与大规模跨海桥梁的建设密不可分。然而,随着桥梁直径的增加,这将带来一些新问题。静态风负荷问题就是例子。在动力特性方面,现有理论计算大跨径桥梁的动力特性,一般忽略随时间变化的动力荷载非线性影响,但是,风速变化时大跨度桥梁的几何变形与内力状态都将发生变化,结构的几何刚度和质量矩阵也随之变化,从而可能影响到结构的动力特性。在强度方面,过去人们普遍认为大跨径桥梁的强度主要是受恒活载或地震荷载控制的,但我们在对香港青龙大桥(主跨1418m悬索桥)进行设计复核时发现,主塔构件的强度是由静风荷载控制的。稳定方面,人们传统认为大跨径桥梁颤振临界风速一般都低于其静风失稳临界风速,但是,1967年日本东京大学Hirai教授在悬索桥的全桥模型风洞试验中观察到了静力扭转发散的现象,同济大学风洞实验室在对汕头海湾二桥的风洞试验中,发现了斜拉桥由静风引起的弯扭失稳现象。因此出现了静风荷载引起的超大跨度桥梁动力特性、强度与稳定的新问题,这些都是超大跨径桥梁在静风荷载作用下的关键问题。本文以超大跨径桥梁为研究对象,计入几何、材料以及静风荷载的三重非线性影响,对悬索桥和斜拉桥在静风荷载作用下的关键问题进行了研究。给出了研究方法和研究成果。1静风条件下的结构计算理论1.1第三,关于3种有效攻角的关系静风荷载对大跨径桥梁的作用一般简化为风对结构的阻力、升力和升力矩的三分力的共同作用。作用在主梁上的三分力(图1)表达式为式中,ρ为空气密度;D、B为主梁截面的高度和宽度;CH0、CV0、CM0为初始攻角时主梁沿体轴坐标系各方向的三分力系数。风洞试验结果表明,三分力系数是风的有效攻角(图2,3)的函数。大跨径桥梁是柔性结构,在静风作用下,结构的姿态将发生改变,导致静风与主梁截面间的有效攻角变化,其三分力也随有效攻角而改变。这样,不仅风速自身的增长会引起静风荷载呈非线性变化,三分力系数的变化也会导致静风荷载的非线性变化。因此,将式(1)用于超大跨径桥梁的静风响应分析,将无法获得结构的准确静风平衡点。合理的分析方法应考虑三分力系数随有效攻角改变的影响。有效攻角α为静风初始攻角θ0与静风作用引起的主梁扭转角θ之和。静风荷载可表示为式中,CH(α)、CV(α)、CM(α)为随攻角变化的三分力函数,可通过节段模型风洞试验实测得;D、B为主梁截面的高度与宽度。1.2单元刚度矩阵考虑静风荷载受有效攻角的影响,静风三分力引起的等效节点力可以写成结构变形的函数。大跨径桥梁在静风荷载作用下的非线性有限元分析可归结为求解以下的非线性平衡方程[K(δ)]{δ}={F(α,v)}(3)式中,[K(δ)]为大跨径桥梁的总体切线刚度矩阵;{F(α,v)}为风速v和有效攻角α时的风载等效节点力向量。对式(3)采用UL增量法求解,相应非线性增量平衡方程组如下式中,[K0]为大跨度桥梁的线弹性刚度矩阵;[Kσj-1(δj-1)]为第j-1步状态时,单元的几何刚度矩阵;{Fj(αj,vi)}为i级风载j步有效攻角αj的风载等效节点力向量;{Fj-1(αj-1,vi)}为i级风载j-1步有效攻角αj-1的风载等效节点力向量。1.3大跨度桥梁自由振动微分方程组为了求解桥梁结构的动力特性(包括频率和振型),首先要建立结构的振动方程,在此方程中,结构的几何刚度矩阵和质量矩阵随结构姿态和内力状态的变化而改变,表现为结构位移{δ}的函数。但是,只要风速v给定,就可以根据方程(4)计算出结构在此风速下的平衡位置,其结构刚度矩阵和质量矩阵也随之而定。此时大跨度桥梁自由振动微分方程组为[M(δv)]⋅{δ¨}+([K0]+[Kσ(δv)])⋅{δ}=0[Μ(δv)]⋅{δ¨}+([Κ0]+[Κσ(δv)])⋅{δ}=0(5)式中,δv——风速为v时结构的节点静位移向量;δ——结构的节点振动位移向量。容易得到相应的频率方程为[K(δv)]{x}-ω2vv2[M(δv)]{x}=0(6)2空气静力失稳的机理大跨径桥梁在静风荷载作用下,主梁发生弯曲和扭转,一方面改变了结构刚度,另一方面改变了风荷载的大小,并反过来增大结构的变形,最终导致结构失稳的现象称为空气静力失稳简称静风失稳。2.1静风荷载的计算考察式(3)可知,结构刚度和静风荷载都是结构变形的函数,为了求解该非线性方程,本文在综合考虑结构几何、材料非线性和静风荷载非线性的基础上提出了采用增量与内外两重迭代相结合的方法。风速按一定比例增加的过程中,内层迭代完成结构的非线性计算,外层迭代寻找结构在某一风速下的平衡位置。该方法的具体实施步骤如下:(1)假定初始风速V0、荷载参数λ及荷载参数增量Δλ。(2)计算在风速V=V0×λ下结构所受的静风荷载。(3)采用Newton?Rapson法求解(3)式,得到结构位移δ。如果结构中单元出现塑性铰就进行总刚重组。(4)从结构位移δ中提取单元扭转角(为左右两节点扭转位移之和的平均值),重新计算结构的静风荷载。(5)检查三分力系数的欧几里得范数是否小于允许值,如下式所示⎧⎩⎨⎪⎪⎪⎪∑j=1Nα[Ck(αj)−Ck(αj−1)]2∑j=1Nα[Ck(αj−1)]2⎫⎭⎬⎪⎪⎪⎪1/2≤εk(k=X‚Y‚Z){∑j=1Να[Ck(αj)-Ck(αj-1)]2∑j=1Να[Ck(αj-1)]2}1/2≤εk(k=X‚Y‚Ζ)(7)式中,Nα为受到静风荷载作用的节点总数;Ck为阻力、升力和升力矩系数;εk为阻力、升力和升力矩系数的允许误差。(6)若小于允许值,判断结构中是否有单元出现塑性铰,如有,记录出现塑性铰的单元号及相应状态,调整荷载参数λ,重新计算至该塑性铰处的弯矩值等于该断面处的极限弯矩值,重复步骤(2)~(5)步;如未出现塑性铰,令λ=λ+Δλ,重复步骤(2)~(5)进行计算。(7)若大于允许值,则重复步骤(3)~(5)。(8)若在某一级风速V下出现迭代不收敛,恢复到上一级风速状态,缩短步长,重新计算,直至相邻两次风速之差小于预定值为止。2.2风速下的下转桥根据现有静风稳定计算方法,分别计算了两座大跨度桥梁的静风稳定性。(1)斜拉桥:本文以日本学者T.Miyata设计的1000m跨径的斜拉桥为结构模型(具体数据可参考文献),主梁截面取南京二桥形式进行静风稳定计算。计算结果如表1所示。图4为各种非线性下主梁跨中处扭转变形随风速变化的比较。(2)悬索桥:以虎门桥为例,采用两种不同的分析方法对其空气静力稳定性进行了计算。虎门大桥是中跨888.0m的钢箱梁悬索桥,主梁梁高3.012m,桥宽35.6m,桥塔为门式框架结构,塔高为150m,主缆间距为33m,吊杆共2×72对,间距为12.0m,其主要构件截面材料及几何特性见表2。计算结果列于表3。图5为主梁跨中点处扭转变形随风速的变化历程。计算表明:(1)一般情况下,采用线性方法计算出的大跨度桥梁失稳临界风速比非线性结果高。(2)作用在结构上的静风荷载是非线性的,所以结构的变形随风速的变化呈明显的非线性。(3)大跨径桥梁的空气静力失稳表现为空间弯扭耦合失稳。(4)计入材料非线性计算静风临界风速较不计入的结果小,但失稳时结构并不变成机构,这是因为在一般情况下,材料非线性降低了结构切线刚度,但不是引起静风失稳的主要原因。2.3参数研究与特殊现象分析2.3.1结构的静力稳定性为了避免静风失稳,必须提高其临界风速。因此有必要考察设计参数变化对结构静风失稳风速的影响,以获得改善大跨径桥梁空气静力稳定性的方法。作者分别就各种参数对斜拉桥和悬索桥空气静力稳定性的影响进行了研究,限于篇幅,本文仅给出研究结果。a.结构宽跨比增大,其空气静力稳定性提高,宽跨比增大25%,临界风速提高17.2%。b.增加桥面均布荷载可以提高桥梁的空气静力稳定性。c.采用不同的主梁断面将明显改变斜拉桥的静风稳定性。d.初始攻角增大,斜拉桥的静风稳定性有所下降。e.增加斜拉桥主塔高度,结构的静风稳定性降低。f.改变斜拉桥边跨跨径对结构的静风稳定性影响不大。g.考虑斜拉索上的静风荷载将降低结构的静风稳定性。h.斜拉索的垂度效应会明显降低结构的抗静风能力,仅采用Ernst公式计入拉索垂度效应是不够的,只有采用悬链线索单元考虑斜拉索垂度效应才能比较真实地反映其空气静力稳定性。i.悬索桥主缆垂度效应对结构的静风稳定性影响不大,计算时可以不计缆索的垂度效应。2.3.2主梁断面升力系数作者在研究中观察到两个特殊现象。一是在对主跨518m的汕头海湾二桥进行分析时,发现该桥在0°攻角下的空气静力失稳风速(129m/s)低于颤振临界风速(140m/s),即空气静力失稳先于动力失稳,该现象已在同济大学风洞试验室里得到证实。但一般而言,发生这种现象的斜拉桥主跨跨径应在800m以上。图6中曲线1为汕头海湾二桥主梁断面升力矩系数实测值,曲线2为常规主梁断面升力矩系数曲线。用上述两种升力矩系数分别对汕头海湾二桥进行分析,结果如表4所示。图7为主梁跨中点处扭转角随风速变化过程。计算结果表明,产生这种现象的主要原因是该桥主梁断面的升力矩曲线在攻角大于3°后的形状与常规断面不同。另一个现象是江阴大桥静风临界风速线性结果(97m/s)比非线性结果(113m/s)低,考察江阴桥截面的升力矩系数曲线可知(图8所示),产生这种现象的主要原因是线性公式近似采用0°攻角下的升力矩系数曲线斜率作为临界风速时的斜率,此时该曲线的斜率最大。而非线性分析方法考虑了斜率随攻角的变化,临界风速作用下升力矩系数曲线斜率比0°攻角下的斜率小,从而导致了上述结果的发生。为了验证这一解释,分别采用江阴桥和虎门桥的三分力系数计算曲线,对江阴大桥的静风稳定性进行计算。计算结果列于表5。计算结果证明了我们的判断。综合以上两种现象可以看出,大跨度桥梁的静风临界风速与结构主梁断面升力矩系数曲线的形状密切相关,改善升力矩系数曲线形状可以有效改善大跨径桥梁空气静力稳定性。3.在风速v的基础上求解动力特性,主要考根据式(6),按如下方法容易求出风速v时的n个自振频率和振型{x}。(1)根据施工方法,求出结构的恒载内力和构形以确定零风速下成桥初始状态,以此状态下的[Kσ]G形成结构总刚([K0]+[Kσ]G)。(2)根据给定风速,增加一级风速v1=v0+Δv,计算三分力及其等效节点力{F(δ,v1)},通过Newton?Raphson法与增量法计算方程(2),获得在此风速下的结构状态(位移,内力等),进而求得几何刚度矩阵[Kσ(δv1)]。(3)重复第(2)步,直至v1=v,求出相应的[Kσ(δv)]和[M(δv)]。(4)将计算得到的几何刚度矩阵[Kσ(δv)]和质量矩阵[M(δv)]代入式(6),得到在风速v下桥梁的自振频率[ωv]和自振的振型。(5)输出结果。为了研究静风荷载对大跨度桥梁动力特性的影响,作者以虎门大桥为例进行了静风荷载作用下动力特性的分析。图9、图10给出了虎门大桥的动力特性随风速的变化曲线,当风速较小时,各阶频率随风速变化不大。但在接近80m/s风速时,频率有增大的趋势。这是因为此时风的升力作用方向向下,与升力矩共同作用,使得主缆总体索力增加,从而使频率增加。而当风速超过80m/s后,升力反向向上作用,使结构丧失了一部分重力刚度,频率开始下降。当风速临近120m/s时,频率急剧下降。通过以上以及其它桥梁的分析比较,我们得出如下结论:(1)大跨度桥梁的动力特性与静风荷载有关,斜拉桥与悬索桥相比,静风荷载对悬索桥的动力特性影响更大。(2)常风速风载对结构动力特性影响较小,可以忽略不计。(3)在接近静风失稳阶段,结构的弯、扭频率急速下降,计算其动力特性时必须计入静风效应。(4)在频域内分析大跨度颤振临界风速时,如果其临界风速与静风临界风速接近时,必须考虑静风对动力特性的影响。4大跨径桥梁静风响应影响因素本文以超大跨径桥梁为研究对象,计入几何、材料以及静风荷载的非线性的三重影响,对它们在静风荷载作用下的关键问题进行了研究,揭示了结构的静风响应、动力特性与结构设计参数和三分力系数之间的内在联系,得出了以下结论:(1)结构形式、主梁断面形式、风的初始攻角等因素对大跨度桥梁的静风响应都有不同程度的影响
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 23723.5-2025起重机安全使用第5部分:桥式和门式起重机
- GB/T 23500-2025元宵质量通则
- 建筑行业智能管理平台开发采购合同
- 户外运动装备租赁使用安全免责协议书
- 硬件设备购销合同
- 游戏行业虚拟物品交易风险告知免责协议
- 独家代理手房合同
- 工程总承包联合体协议书
- 基于大数据的智能能源管理系统合作协议
- 专利申请与维护合同
- 小学科学冀人版六年级下册全册同步练习含答案
- 邮政储蓄银行-客户经理(个人消费贷款)-试题+答案
- 2024年3月10日国考公务员税务局面试真题及解析
- 市政造价员道路工程预决算入门讲解(零起步培训课件)
- VOC废气治理工程中低温催化氧化技术的研究与实践
- 《管理统计学》课件
- 教师的挑战:宁静的课堂革命
- 新能源材料与器件导论绪论
- 市政工程监理实施细则(完整版)
- 量具能力准则Cg-Cgk评价报告
- 旅游管理-我国老年旅游市场现状及开发策略
评论
0/150
提交评论