




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lecture8AutomaticTestPatternGeneration第八讲自动测试生成Lecture8AutomaticTestPatte1Contents
内容目录TestabilityMeasures/可测试性测度CombinationalCircuitATPG/组合电路ATPGSequentialCircuitATPG/
时序电路ATPGSummary/小结Contents
内容目录TestabilityMeasu21TestabilityMeasures
可测试性测度Needapproximatemeasureof:Controllability--Difficultyofsettinginternalcircuitlinesto0or1bysettingprimarycircuitinputsObservability--Difficultyofobservinginternalcircuitlinesbyobservingprimaryoutputs1TestabilityMeasures
可测试性测度N31.1Purpose
目的Uses:Analysisofdifficultyoftestinginternalcircuitparts–redesignoraddspecialtesthardwareGuidanceforalgorithmscomputingtestpatterns–avoidusinghard-to-controllinesEstimationoffaultcoverageEstimationoftestvectorlength1.1Purpose
目的Uses:41.2Origins
起源ControltheoryRutman1972--FirstdefinitionofcontrollabilityGoldstein1979--SCOAPFirstdefinitionofobservabilityFirstelegantformulationFirstefficientalgorithmtocomputecontrollabilityandobservabilityParker&McCluskey1975DefinitionofProbabilisticControllabilityBrglez1984--COP1stprobabilisticmeasuresSeth,Pan&Agrawal1985–PREDICT1stexactprobabilisticmeasures1.2Origins
起源Controltheory51.3TestabilityAnalysis
可测试性分析InvolvesCircuitTopologicalanalysis,butnotestvectorsandnosearchalgorithm.StaticanalysisLinearcomputationalcomplexity,Otherwise,ispointless–mightaswelluseautomatictest-patterngenerationandcalculate:ExactfaultcoverageExacttestvectors1.3TestabilityAnalysis
可测试性分61.4SCOAPmeasures
SCOAP测度SCOAP–SandiaControllabilityandObservabilityAnalysisProgramCombinationalmeasures:CC0–Difficultyofsettingcircuitlinetologic0CC1–Difficultyofsettingcircuitlinetologic1CO–DifficultyofobservingacircuitlineSequentialmeasures–analogous:SC0SC1SO1.4SCOAPmeasures
SCOAP测度SCOA71.4.1RangeofSCOAPMeasures
SCOAP测度范围Controllabilities–1(easiest)toinfinity(hardest)Observabilities–0(easiest)toinfinity(hardest)Combinationalmeasures:Roughlyproportionalto#circuitlinesthatmustbesettocontrolorobservegivenlineSequentialmeasures:Roughlyproportionalto#timesaflip-flopmustbeclockedtocontrolorobservegivenline1.4.1RangeofSCOAPMeasures81.4.2ControllabilityRules
可控制性规则1.4.2ControllabilityRules
可控91.4.2ControllabilityRules(Cont.)
可控制性规则(续)1.4.2ControllabilityRules(C101.4.3ObservabilityRules
可观察性规则Toobserveagateinput:Observeoutputandmakeotherinputvaluesnon-controlling1.4.3ObservabilityRules
可观察性111.4.3ObservabilityRules(Cont.)
可观察性规则Toobserveafanoutstem:Observeitthroughbranchwithbestobservability1.4.3ObservabilityRules(Con121.4.4DFlip-FlopRules
D触发器规则AssumeasynchronousRESETline.CC1(Q)=CC1(D)+CC1(C)+CC0(C)+CC0
(RESET)SC1(Q)=SC1(D)+SC1(C)+SC0(C)+SC0
(RESET)+1CC0(Q)=min[CC1(RESET)+CC1(C)+CC0(C),CC0(D)+CC1(C)+CC0(C)]SC0(Q)isanalogousCO(D)=CO(Q)+CC1(C)+CC0(C)+CC0(RESET)SO(D)isanalogous1.4.4DFlip-FlopRules
D触发器规则131.4.4DFlip-FlopRules(Cont.)
D触发器规则(续)CO(RESET)=CO(Q)+CC1(Q)+CC1(RESET)+CC1(C)+CC0(C)SO(RESET)isanalogousThreewaystoobservetheclockline:SetQto1andclockina0fromDSettheflip-flopandthenresetitResettheflip-flopandclockina1fromDCO(C)=min[CO(Q)+CC1(Q)+CC0(D)+CC1(C)+CC0(C),CO(Q)+CC1(Q)+CC1(RESET)+
CC1(C)+CC0(C),CO(Q)+CC0(Q)+CC0(RESET)+CC1(D)+CC1(C)+CC0(C)]SO(C)isanalogous1.4.4DFlip-FlopRules(Cont.141.4.5LevelizationAlgorithm6.1
分级算法Labeleachgatewithmax#oflogiclevelsfromprimaryinputsorwithmax#oflogiclevelsfromprimaryoutputAssignlevel#0toallprimaryinputs(PIs)ForeachPIfanout:LabelthatlinewiththePIlevelnumber,&QueuelogicgatedrivenbythatfanoutWhilequeueisnotempty:DequeuenextlogicgateIfallgateinputshavelevel#’s,labelthegatewiththemaximumofthem+1;Else,requeuethegate1.4.5LevelizationAlgorithm6151.4.6TestabilityAlgorithm6.2
可测试性算法ForallPIs,CC0=CC1=1andSC0=SC1=0Forallothernodes,CC0=CC1=SC0=SC1=GofromPIstoPOS,usingCCandSCequationstogetcontrollabilities--IterateonloopsuntilSCstabilizes--convergenceguaranteedForallPOs,setCO=SO=
0Forallothernodes,
CO=SO=WorkfromPOstoPIs,UseCO,SO,andcontrollabilitiestogetobservabilitiesFanoutstem(CO,SO)=minbranch(CO,SO)IfaCCorSC(COorSO)is,thatnodeisuncontrollable(unobservable)8881.4.6TestabilityAlgorithm6.162CombinationalCircuitATPG
组合电路ATPGElectron-beam(E-beam)testobservesinternalsignals–“picture”ofnodeschargedto0and1indifferentcolorsTooexpensiveTheATPGproblem:Givenalogicalfaultmodel,andacircuit,determineasmallsetoftestvectorsthatdetectallfaultsinthecircuit.2CombinationalCircuitATPG
172.1Functionalvs.StructuralATPG
功能和结构测试2.1Functionalvs.Structural182.1.1Compare
比较FunctionalATPG–generatecompletesetoftestsforcircuitinput-outputcombinations129inputs,65outputs:2129=680,564,733,841,876,926,926,749,214,863,536,422,912patternsUsing1GHzATE,wouldtake2.15x1022yearsStructuraltest:Noredundantadderhardware,64bitslicesEachwith27faults(usingfaultequivalence)Atmost64x27=1728faults(tests)Takes0.000001728son1GHzATEDesignergivessmallsetoffunctionaltests–augmentwithstructuralteststoboostcoverageto98+%2.1.1Compare
比较FunctionalATP192.2AlgorithmCompleteness
算法完备性Definition:Algorithmiscompleteifitultimatelycansearchentirebinarydecisiontree,asneeded,togenerateatestUntestablefault–notestforitevenafterentiretreesearchedCombinationalcircuitsonly–untestablefaultsareredundant,showingthepresenceofunnecessaryhardware2.2AlgorithmCompleteness
算法完202.3Algebras:5-Valuedand9-Valued
算法代数:5值和9值逻辑代数SymbolDD01XG0G1F0F1Meaning1/00/10/01/1X/X0/X1/XX/0X/1FailingMachine0101XXX01GoodMachine1001X01XXRoth’sAlgebraMuth’sAdditions2.3Algebras:5-Valuedand9-V212.3.1Higher-OrderAlgebras
高阶代数Representtwomachines,whicharesimulatedsimultaneouslybyacomputerprogram:Goodcircuitmachine(1stvalue)Badcircuitmachine(2ndvalue)Bettertorepresentbothinthealgebra:Needonly1passofATPGtosolvebothGoodmachinevaluesthatprecludebadmachinevaluesbecomeobvioussooner&viceversaNeededforcompleteATPG:Combinational:Multi-pathsensitization,RothAlgebraSequential:MuthAlgebra--goodandbadmachinesmayhavedifferentinitialvaluesduetofault2.3.1Higher-OrderAlgebras
高阶222.4TypesofAlgorithms
算法类型Exhaustive/穷举算法Random-PatternGeneration/随机码生成BooleanDifferenceSymbolicMethod/布尔差分符号方法PathSensitizationMethod/路径敏化方法BooleanSatisfiability/布尔可满足性2.4TypesofAlgorithms
算法类型E232.4.1Exhaustive
穷举算法Forn-inputcircuit,generateall2ninputpatternsInfeasible,unlesscircuitispartitionedintoconesoflogic,with15inputsPerformexhaustiveATPGforeachconeMissesfaultsthatrequirespecificactivationpatternsformultipleconestobetested
2.4.1Exhaustive
穷举算法Forn-in242.4.2Random-PatternGeneration
随机码生成FlowchartformethodUsetogettestsfor60-80%offaults,thenswitchtoD-algorithmorotherATPGforrest2.4.2Random-PatternGeneratio252.4.3BooleanDifferenceSymbolicMethod
布尔差分符号方法g=G(X1,X2,…,Xn)forthefaultsitefj=Fj(g,X1,X2,…,Xn)1j
mXi=0or1for1i
n
2.4.3BooleanDifferenceSymbo26Shannon’sExpansionTheorem:
F(X1,X2,…,Xn)=X2
F(X1,1,…,Xn)+X2
F(X1,0,…,Xn)BooleanDifference(partialderivative):
FjgFaultDetectionRequirements:
G(X1,X2,…,Xn)=1Fjg2.4.3.1BooleanDifference(Sellers,Hsiao,Bearnson)=Fj(1,X1,X2,…,Xn)Fj(0,X1,…,Xn)=Fj(1,X1,X2,…,Xn)Fj(0,X1,…,Xn)=1
Shannon’sExpansionTheorem:272.4.4PathSensitizationMethod
路径敏化方法FaultSensitization/故障敏化FaultPropagation/故障传播LineJustification/线验证2.4.4PathSensitizationMetho282.4.4.1CircuitExample
电路实例Trypathf–h–k–L
blockedat
j,sincethereisnowaytojustifythe1on
i10DD111DDD2.4.4.1CircuitExample
电路实例Tr292.4.4.1CircuitExample(Cont.)
电路实例(续)Trysimultaneouspathsf–h–k–Land
g–i–j–k–LblockedatkbecauseD-frontier(chainofDorD)disappears1DDDDD1112.4.4.1CircuitExample(Cont.302.4.4.1CircuitExample(Cont.)
电路实例(续)Finaltry:path
g–i–j–k–L–testfound!0DDD1DD1012.4.4.1CircuitExample(Cont.312.4.5BooleanSatisfiability
布尔可满足性2SAT:xixj+xjxk+xlxm…=0
xpxy+xrxs+xtxu…=03SAT:xixjxk+xjxkxl+xlxmxn…=0
xpxy+xrxsxt+xtxuxv…=0......2.4.5BooleanSatisfiability
322.4.5.1SatisfiabilityExampleforANDGateS
akbkck=0(non-tautology)or
P(ak+bk+ck)=1(satisfiability)ANDgatesignalrelationships:Cube:Ifa=0,thenz=0azIfb=0,thenz=0bzIfz=1,thena=1ANDb=1zabIfa=1ANDb=1,thenz=1abzSumtoget:az+bz+abz=0(thirdrelationshipisredundantwith1sttwo)2.4.5.1SatisfiabilityExample332.4.5.2Pseudo-BooleanandBooleanFalseFunctionsPseudo-Booleanfunction:useordinary+-integerarithmeticoperatorsComplementationofxrepresentedby1–xFpseudo—Bool
=2z+ab–az–bz–abz=0Energyfunctionrepresentation:letanyvariablebeintherange(0,1)inpseudo-BooleanfunctionBooleanfalseexpression:
fAND
(a,b,z)=z(ab)=az+bz+abz
2.4.5.2Pseudo-BooleanandBoo342.4.5.3ANDGateImplicationGraph
隐含图ReallyefficientEachvariablehas2nodes,oneforeachliteralIf…thenclauserepresentedbyedgefromifliteraltothenliteralTransformintotransitiveclosuregraph
Whennodetrue,allreachablestatesaretrueANDingoperatorusedfor3SATrelations
2.4.5.3ANDGateImplicationG352.5ComputationalComplexity
计算复杂性IbarraandSahnianalysis–NP-Complete(nopolynomialexpressionfoundforcomputetime,presumedtobeexponential)Worstcase:
no_piinputs,2no_piinputcombinations
no_ffflip-flops,4no_ffinitialflip-flopstates(goodmachine0or1badmachine0or1)worktoforwardorreversesimulatenlogicgatesa
nComplexity:O(nx2no_pix4no_ff)
2.5ComputationalComplexity
计362.6HistoryofAlgorithmSpeedups
算法历史AlgorithmD-ALGPODEMFANTOPSSOCRATESWaicukauskietal.ESTTRANRecursivelearningTafertshoferetal.Est.speedupoverD-ALG(normalizedtoD-ALGtimeTPGSystem2189ATPGSystem8765ATPGSystem3005ATPGSystem48525057Year1966198119831987198819901991199319951997
2.6HistoryofAlgorithmSpeed372.7FaultCoverageandEfficiency
故障覆盖率和效率Faultcoverage=Faultefficiency
#ofdetectedfaultsTotal#faults#ofdetectedfaultsTotal#faults--#undetectablefaults=2.7FaultCoverageandEfficie382.8TestGenerationSystems
测试生成系统CircuitDescriptionTestPatternsUndetectedFaultsRedundantFaultsAbortedFaultsBacktrackDistributionFaultListCompacterSOCRATESWithfaultsimulator2.8TestGenerationSystems
测试392.9TestCompaction
测试压缩FaultsimulatetestpatternsinreverseorderofgenerationATPGpatternsgofirstRandomly-generatedpatternsgolast(becausetheymayhavelesscoverage)Whencoveragereaches100%,dropremainingpatterns(whicharetheuselessrandomones)Significantlyshortenstestsequence–economiccostreduction2.9TestCompaction
测试压缩Fault402.9.1StaticandDynamicCompaction
静态和动态压缩StaticcompactionATPGshouldleaveunassignedinputsasXTwopatternscompatible–ifnoconflictingvaluesforanyPICombinetwoteststaandtbintoonetesttab
=
tatbusingD-intersectionDetectsunionoffaultsdetectedbyta&tbDynamiccompactionProcesseverypartially-doneATPGvectorimmediatelyAssign0or1toPIstotestadditionalfaults
2.9.1StaticandDynamicCompa412.9.2CompactionExample
压缩实例t1
=01Xt2=0X1t3=0X0t4=X01Combine
t1andt3,then
t2andt4Obtain:t13
=010t24=001TestLengthshortenedfrom4to22.9.2CompactionExample
压缩实例t423SequentialCircuitsATPG
时序电路ATPGAsequentialcircuithasmemoryinadditiontocombinationallogic.Testforafaultinasequentialcircuitisasequenceofvectors,whichInitializesthecircuittoaknownstateActivatesthefault,andPropagatesthefaulteffecttoaprimaryoutputMethodsofsequentialcircuitATPGTime-frameexpansionmethodsSimulation-basedmethods3SequentialCircuitsATPG
时序电433.1Time-FramesExpansionIfthetestsequenceforasinglestuck-atfaultcontainsnvectors,ReplicatecombinationallogicblockntimesPlacefaultineachblockGenerateatestforthemultiplestuck-atfaultusingcombinationalATPGwith9-valuedlogicComb.blockFaultTime-frame0Time-frame-1Time-frame-n+1UnknownorgivenInit.stateVector0Vector-1Vector-n+1PO0PO-1PO-n+1StatevariablesNextstate3.1Time-FramesExpansionIfth443.1.1ExampleforLogicSystems
实例FF2
FF1ABs-a-13.1.1ExampleforLogicSystem453.1.1.1Five-ValuedLogic(Roth)
0,1,D,D,X
A
BXXX0s-a-1DA
BXXX0s-a-1DFF1FF1FF2FF2DDTime-frame-1Time-frame03.1.1.1Five-ValuedLogic(Rot463.1.1.2Nine-ValuedLogic(Muth)
0,1,1/0,0/1,
1/X,0/X,X/0,X/1,XA
BXXX0s-a-10/1A
B0/X0/X0/1
Xs-a-1X/1
FF1FF1FF2FF20/1X/1Time-frame-1Time-frame03.1.1.2Nine-ValuedLogic(Mut473.1.2ImplementationofATPG
ATPG实现SelectaPOforfaultdetectionbasedondrivabilityanalysis.Placealogicvalue,1/0or0/1,dependingonfaulttypeandnumberofinversions.JustifytheoutputvaluefromPIs,consideringallnecessarypathsandaddingbackwardtime-frames.Ifjustificationisimpossible,thenusedrivabilitytoselectanotherPOandrepeatjustification.IftheprocedurefailsforallreachablePOs,thenthefaultisuntestable.If1/0or0/1cannotbejustifiedatanyPO,but1/Xor0/Xcanbejustified,thethefaultispotentiallydetectable.3.1.2ImplementationofATPG
A483.1.3ComplexityofATPG
计算复杂性Synchronouscircuit--Allflip-flopscontrolledbyclocks;PIandPOsynchronizedwithclock:Cycle-freecircuit–Nofeedbackamongflip-flops:Testgenerationforafaultneedsnomorethandseq+1time-frames,wheredseqisthesequentialdepth.Cycliccircuit–Containsfeedbackamongflip-flops:Mayneed9Nfftime-frames,whereNffisthenumberofflip-flops.Asynchronouscircuit–Highercomplexity!Time-Frame0Time-Framemax-1Time-Framemax-2Time-Frame-2Time-Frame-1S0S1S2S3Smaxmax=Numberofdistinctvectorswith9-valuedelements
=9Nff3.1.3ComplexityofATPG
计算复杂性493.1.3.1Cycle-FreeCircuits
无环电路Characterizedbyabsenceofcyclesamongflip-flopsandasequentialdepth,dseq.dseqisthemaximumnumberofflip-flopsonanypathbetweenPIandPO.Bothgoodandfaultycircuitsareinitializable.Testsequencelengthforafaultisboundedbydseq+1.3.1.3.1Cycle-FreeCircuits
无环503.1.3.2Cycle-FreeExample
无环电路实例F1F2F3Level=12F1F2F3Level=1233dseq=3s-graphCircuitAllfaultsaretestable.SeeExample8.6.3.1.3.2Cycle-FreeExample
无环电513.1.3.3Cycliccircuit
循环电路
Cyclicstructure–Sequentialdepthisundefined.Circuitisnotinitializable.Notestscanbegeneratedforanystuck-atfault.Afterexpandingthecircuitto9Nff=81,orfewer,time-framesATPGprogramcallsanygiventargetfaultuntestable.Circuitcanonlybefunctionallytestedbymultipleobservations.Functionaltests,whensimulated,givenofaultcoverage.3.1.3.3Cycliccircuit
循环电路Cy523.1.3.4CyclicCircuitExample
循环电路实例F1F2CNTZModulo-3counters-graphF1F23.1.3.4CyclicCircuitExample533.1.3.5BenchmarkCircuitsCircuitPIPOFFGatesStructureSeq.depthTotalfaultsDetectedfaultsPotentiallydetectedfaultsUntestablefaultsAbandonedfaultsFaultcoverage(%)Faultefficiency(%)Max.sequencelengthTotaltestvectorsGentestCPUs(Sparc2)s1196141418529Cycle-free412421239
03099.8100.0
331310s1238141418508Cycle-free413551283
072094.7100.0
330815yclic--14861384
2267693.194.8
2452519941yclic--15061379
2309791.693.4
28559191833.1.3.5BenchmarkCircuitsCirc543.1.3.6AsynchronousCircuit
异步电路Anasynchronouscircuitcontainsunclockedmemoryoftenrealizedbycombinationalfeedback.Almostimpossibletobuild,letalonetest,alargeasynchronouscircuit.Clockgenerators,signalsynchronizers,flip-flopsaretypicalasynchronouscircuits.Manylargesynchronoussystemscontainsmallportionsoflocalizedasynchronouscircuitry.SequentialcircuitATPGshouldbeabletogeneratetestsforcircuitswithlimitedasynchronousparts,evenifitdoesnotdetectfaultsinthoseparts.3.1.3.6AsynchronousCircuit
异553.1.3.7AsynchronousModel
异步电路模型ClockedFlip-flopsFeedbackdelaysSynchronousPIsSynchronousPOsSystemClock,CKFastmodelClock,FMCKCKCKFeedback-freeCombinationalLogicCCombinationalFeedbackPaths:FeedbacksetModelingcircuitisShowninorange.PPOPPI3.1.3.7AsynchronousModel
异步电563.1.3.8Time-FrameExpansion
异步电路时帧扩展Time-framekTime-frame-k+1Time-frame-k-1CFMCKCFMCKCFMCKCCKAsynchronousfeedbackstabilizationPIPOFeedbacksetPPIPPOFeedbacksetVectork3.1.3.8Time-FrameExpansion
异573.2simulation-basedmethods
基于模拟的方法Difficultieswithtime-framemethod:LonginitializationsequenceImpossibleinitializationwiththree-valuedlogicCircuitmodelinglimitationsTimingproblems–testscancauseraces/hazardsHighcomplexityInadequacyforasynchronouscircuitsAdvantagesofsimulation-basedmethodsAdvancedfaultsimulationtechnologyAccuratesimulationmodelexistsforverificationVarietyoftests–functional,heuristic,randomUsedsinceearly1960s3.2simulation-basedmethods
基583.2.1UsingFaultSimulator
使用故障模拟器FaultsimulatorVectorsource:Functional(test-bench),Heuristic(walking1,etc.),Weightedrandom,randomFaultlistTestvectorsNewfaultsdetected?Stoppingcriteria(faultcoverage,CPUtimelimit,etc.)satisfied?StopUpdatefaultlistAppendvectorsRestorecircuitstateGeneratenewtrialvectorsYesNoYesNoTrialvectors3.2.1UsingFaultSimulator
使用593.2.2ContestAConcurrenttestgeneratorforsequentialcircuittesting(Contest).Searchfortestsisguidedbycost-functions.Three-phasetestgeneration:Initialization–nofaultstargeted;cost-functioncomputedbytrue-valuesimulator.Concurrentphase–allfaultstargeted;costfunctioncomputedbyaconcurrentfaultsimulator.Singlefaultphase–faultstargetedoneatatime;costfunctioncomputedbytrue-valuesimulationanddynamictestabilityanalysis.Ref.:Agrawal,etal.,IEEE-TCAD,1989.3.2.2ContestAConcurrenttest603.2.2.1ContestResult:s537835PIs,49POs,179FFs,4,603faults.Synchronous,singleclock.Contest75.5%01,72257,5323min.*9min.*Randomvectors67.6%057,532--09min.Gentest**72.6%122490--4.5hrs.10sec.FaultcoverageUntestablefaultsTestvectorsTrialvectorsusedTestgen.CPUtime#Faultsim.CPUtime##SunUltraII,200MHzCPU*Estimatedtime**Time-frameexpansion(highercoveragepossiblewithmoreCPUtime)3.2.2.1ContestResult:s53783613.2.3GeneticAlgorithms(GAs)
遗传算法Theoryofevolutionbynaturalselection(Darwin,1809-82.)C.R.Darwin,OntheOriginofSpeciesbyMeansofNaturalSelection,London:JohnMurray,1859.J.H.Holland,AdaptationinNaturalandArtificialSystems,AnnArbor:UniversityofMichiganPress,1975.D.E.Goldberg,GeneticAlgorithmsinSearch,Optimization,andMachineLearning,Reading,Massachusetts:Addison-Wesley,1989.P.MazumderandE.M.Rudnick,GeneticAlgorithmsforVLSIDesign,LayoutandTestAutomation,UpperSaddleRiver,NewJersey,PrenticeHallPTR,1999.BasicIdea:Populationimproveswitheachgeneration.PopulationFitnesscriteriaRegenerationrules3.2.3GeneticAlgorithms(GAs)623.2.3.1GAsforTestGenerationPopulation:Asetofinputvectorsorvectorsequences.Fitnessfunction:Quantitativemeasuresofpopulationsucceedingintaskslikeinitializationandfaultdetection(reciprocaltocostfunctions.)Regenerationrules(heuristics):Memberswithhigherfitnessfunctionvaluesareselectedtoproducenewmembersviatransformationslikemutationandcrossover.3.2.3.1GAsforTestGeneratio633.2.3.2StrategateResultss1423s5378s35932Totalfaults1,5154,60339,094Detectedfaults1,4143,63935,100Faultcoverage93.3%79.1%89.8%Testvectors3,94311,571257CPUtime1.3hrs.37.8hrs.10.2hrs.HPJ200256MBRef.:M.S.Hsiao,E.M.RudnickandJ.H.Patel,“DynamicStateTraversalforSequentialCircuitTestGeneration,”ACMTrans.
onDesignAutomationofElectronicSystems(TODAES),vol.5,no.3,July2000.3.2.3.2StrategateResults643.2.4SpectralMethods
光谱方法ReplacewithcompactedvectorsTestvectors(initiallyrandomvectors)Faultsimulation-basedvectorcompactionStoppingcriteria(coverage,CPUtime,vectors)satisfied?Extractspectralcharacteristics(e.g.,Hadamardcoefficients)andgeneratevectorsStopAppendnewvectorsCompactedvectorsNoYes3.2.4SpectralMethods
光谱方法Rep653.2.4.1SpectralInformation
光谱信息Randominputsresemblenoiseandhavelowcoverageoffaults.Sequentialcircuittestsarenotrandom:SomePIsarecorrelated.SomePIsareperiodic.Correlationandperiodicitycanberepresentedbyspectralcomponents,e.g.,Hadamardcoefficients.Vectorcompactionremovesunnecessaryvectorswithoutreducingfaultcoverage:Reversesimulationforcombinationalcircuits(Example5.5.)Vectorrestorationforsequentialcircuits.Compactionissimilartonoiseremoval(filtering)andenhancesspectralcharacteristics.3.2.4.1SpectralInformation
光663.2.4.2SpectralMethod:s5378Simulation-basedmethodsTi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中式面点制作(视频课)知到课后答案智慧树章节测试答案2025年春洛浦县中等职业技术学校
- 海南外国语职业学院《建筑设计与构造(2)》2023-2024学年第二学期期末试卷
- 长沙民政职业技术学院《大气污染控制工程》2023-2024学年第二学期期末试卷
- 柳州职业技术学院《材料连接原理与技术》2023-2024学年第二学期期末试卷
- 厦门海洋职业技术学院《工程地质(一)》2023-2024学年第二学期期末试卷
- 淮北职业技术学院《漆画创作》2023-2024学年第二学期期末试卷
- 古代舆论沟通机制
- 构建人类命运共同体的重要性与必要性
- 高压水枪冲洗施工方案
- 牌楼建筑修缮施工方案
- 2024年中国农业大学招聘笔试真题
- 课件:以《哪吒2》为镜借哪吒精神燃开学斗志
- 人教版新起点三年级下册英语同步练习试题(全册)
- 煤场安全事故应急预案
- 2025年全球及中国大型不锈钢铸件行业头部企业市场占有率及排名调研报告
- 带电粒子在磁场中的运动与临界问题-2025年高考物理易错题专练(解析版)
- 2025年湖南信息职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- Unit 7 Careers Lesson 1EQIQ 说课稿-2024-2025学年高中英语北师大新版(2019)选择性必修第三册
- 《中国体育发展历程》课件
- 洞箫曲谱200首带目录
- 餐饮行业组织架构及员工职责分析
评论
0/150
提交评论