2022年四川省雅安市孔坪中学高二数学文下学期摸底试题含解析_第1页
2022年四川省雅安市孔坪中学高二数学文下学期摸底试题含解析_第2页
2022年四川省雅安市孔坪中学高二数学文下学期摸底试题含解析_第3页
2022年四川省雅安市孔坪中学高二数学文下学期摸底试题含解析_第4页
2022年四川省雅安市孔坪中学高二数学文下学期摸底试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省雅安市孔坪中学高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,,,则3个数,,的值(

)A.至多有一个不大于1 B.至少有一个不大于1C.都大于1 D.都小于1参考答案:B【分析】利用反证法,假设的值都大于1,则,这与=矛盾,据此即可得到符合题意的选项.【详解】假设的值都大于1,则,这与==矛盾,∴假设不成立,即的值至少有一个不大于1.本题选择B选项.【点睛】应用反证法时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.2.已知集合A={x|x2≤4,x∈R},B={x|≤4,x∈Z},则A∩B()A.(0,2) B.[0,2] C.{0,1,2} D.{0,2}参考答案:C【考点】交集及其运算.【分析】求出A与B中不等式的解集确定出A与B,找出A与B的交集即可.【解答】解:由A中不等式解得:﹣2≤x≤2,即A=[﹣2,2],由B中不等式解得:0≤x≤16,x∈Z,即B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},则A∩B={0,1,2},故选:C.3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为

)A.大前提错误

B.小前提错误

C.推理形式错误

D.非以上错误参考答案:A略4.计算的结果等于(

)ks5u

A.

B.

C.

D.参考答案:B5.已知函数在区间(1,2)上是减函数,则实数a的取值范围是()A. B. C. D.参考答案:A【分析】对函数求导,将问题转化成在恒成立,从而求出的取值范围.【详解】∵,∴.∵在区间上是减函数,∴在上恒成立,即上恒成立.∵,∵,∴.∴实数的取值范围为.故选A.【点睛】本题考查利用导数研究函数的单调性以及一元二次不等式的解法,是高考中的热点问题,解题的关键是将函数在给定区间上是减函数转化为导函数小于等于零恒成立,属于基础题.6.设椭圆和双曲线的公共焦点为,是两曲线的一个公共点,则cos的值等于(

)A.

B.

C.

D.参考答案:B略7.某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为(

)A

36种

B33种

C

27种

D

21种参考答案:C8.设在内单调递增,,则是的(

)A.必要不充分条件

B.充分不必要条件C.充分必要条件

D.既不充分也不必要条件参考答案:A9.复数在复平面上对应的点位于(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D10.已知复数,若是纯虚数,则实数等于

A.

B.

C.

D.高参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.给出以下四个问题:①输入一个数x,输出它的绝对值;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数f(x)=的函数值.其中需要用选择结构来描述算法的有________个.参考答案:312.正方体的棱长为1,为线段的中点,为线段上的动点,过的平面截该正方体所得的截面记为,则所有正确的命题是_______.①当0<<时,为四边形;②当=时,为等腰梯形;③当=时,与的交点满足=;④当<<1时,为五边形;⑤当=1时,的面积为.参考答案:①②④13.“若或,则”的逆否命题是

.参考答案:若,则且14.已知双曲线的离心率为2,过右焦点F且斜率为k的直线与双曲线C右支相交于A,B两点,若,则k=

.参考答案:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E,根据双曲线的第二定义,得|AA1|=,|BB1|=,∵,则|AA1|=2|BB1|=,cos∠BAE====,∴sin∠BAE=,∴tan∠BAE=.∴k=.故答案为:

15.如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是

.参考答案:【考点】LF:棱柱、棱锥、棱台的体积.【分析】由题意,△ABD≌△PBD,可以理解为△PBD是由△ABD绕着BD旋转得到的,对于每段固定的AD,底面积BCD为定值,要使得体积最大,△PBD必定垂直于平面ABC,此时高最大,体积也最大.【解答】解:如图,M是AC的中点.①当AD=t<AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AE,DM=﹣t,由△ADE∽△BDM,可得,∴h=,V==,t∈(0,)②当AD=t>AM=时,如图,此时高为P到BD的距离,也就是A到BD的距离,即图中AH,DM=t﹣,由等面积,可得,∴,∴h=,∴V==,t∈(,2)综上所述,V=,t∈(0,2)令m=∈[1,2),则V=,∴m=1时,Vmax=.故答案为:.16.已知直线:和:垂直,则实数的值为_________.参考答案:【分析】对a分类讨论,利用相互垂直的直线斜率之间的关系即可得出.【详解】a=1时,两条直线不垂直,舍去.a≠1时,由﹣×=﹣1,解得a=.故答案为:.【点睛】本题考查了分类讨论、相互垂直的直线斜率之间的关系,考查推理能力与计算能力,属于基础题.17.直线为函数图像的切线,则的值为

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.参考答案:【考点】HR:余弦定理;HP:正弦定理.【分析】(I)利用倍角公式和诱导公式即可得出;(II)由三角形的面积公式即可得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,即可得出a.又由正弦定理得即可得到即可得出.【解答】解:(Ⅰ)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(Ⅱ)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.19.如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是,,.(Ⅰ)若该曲线表示一个椭圆,设直线过点且斜率是,求直线与这个椭圆的公共点的坐标.(Ⅱ)若该曲线表示一段抛物线,求该抛物线的方程.参考答案:见解析(Ⅰ)若该曲线表示一个椭圆,则椭圆方程为,∵直线过且斜率为,∴直线的方程为:,将,代入,得,化简得:,解得或,将代入,得,故直线与椭圆的公共点的坐标为,.(Ⅱ)若该曲线是一段抛物线,则可设抛物线方程为:,将代入得,解得:,∴抛物线的方程为,即.20.已知函数,且时有极大值.(Ⅰ)求的解析式;(Ⅱ)若为的导函数,不等式(为正整数)对任意正实数恒成立,求的最大值.(注:)参考答案:解:(Ⅰ)由,因为在时有极大值,所以,从而得或,--------------------3分,①当时,,此时,当时,,当时,,∴在时有极小值,不合题意,舍去;-------------------4分②当时,,此时,符合题意。∴所求的

------------------6分(Ⅱ)由(1)知,所以等价于等价于,即,记,则,------------------8分由,得,所以在上单调递减,在上单调递增,所以,------------------9分对任意正实数恒成立,等价于,即,----10分记因为在上单调递减,又,,∵,∴k=1,2,3,4,故的最大值为4.------------------12分21.已知函数f(x)=x3+ax2+bx+c在x=﹣1与x=2处都取得极值.(Ⅰ)求a,b的值及函数f(x)的单调区间;(Ⅱ)若对x∈[﹣2,3],不等式f(x)+c<c2恒成立,求c的取值范围.参考答案:【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性;R6:不等式的证明.【分析】(1)求出f′(x)并令其=0得到方程,把x=﹣1和x=2代入求出a、b即可;(2)求出函数的最大值为f(﹣1),要使不等式恒成立,既要证f(﹣1)+c<c2,即可求出c的取值范围.【解答】解:(Ⅰ)f′(x)=3x2+2ax+b,由题意:即解得∴,f′(x)=3x2﹣3x﹣6令f′(x)<0,解得﹣1<x<2;令f′(x)>0,解得x<﹣1或x>2,∴f(x)的减区间为(﹣1,2);增区间为(﹣∞,﹣1),(2,+∞).(Ⅱ)由(Ⅰ)知,f(x)在(﹣∞,﹣1)上单调递增;在(﹣1,2)上单调递减;在(2,+∞)上单调递增.∴x∈[﹣2,3]时,f(x)的最大值即为f(﹣1)与f(3)中的较大者.;∴当x=﹣1时,f(x)取得最大值.要使,只需,即:2c2>7+5c解得:c<﹣1或.∴c的取值范围为.22.设命题对恒成立,命题.(1)若为真,求实数m的取值范围;(2)若为真,为假,求实数m的取值范围.参考答案:(1);(2).【分析】先求出命题均为真命题时实数的取值范围.(1)由为真可得均为真命题,取交集可得所求范围;(2)由题意得一真一假,分类讨论可得所求范围.【详解】若命题为真

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论