从高考数学命题改革看高三数学备考方略课件-2023新教材新高考复习备考交流会专家讲座_第1页
从高考数学命题改革看高三数学备考方略课件-2023新教材新高考复习备考交流会专家讲座_第2页
从高考数学命题改革看高三数学备考方略课件-2023新教材新高考复习备考交流会专家讲座_第3页
从高考数学命题改革看高三数学备考方略课件-2023新教材新高考复习备考交流会专家讲座_第4页
从高考数学命题改革看高三数学备考方略课件-2023新教材新高考复习备考交流会专家讲座_第5页
已阅读5页,还剩124页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课程与评价改革,政策性很强!数学命题之趋势,已初现端倪!新课程教育教学,策略与操作同等重要!湖南省教科院黄仁寿

从高考数学命题改革看高三数学备考方略

————以全国新高考数学一卷为例20022年高考落幕,高考数学试卷解密,数学试题难度随即成为网络热搜。

甚至有网友戏言:难于天际,吊打考生。

这个现象意味着什么?对高中数学教学,特别是高三数学备有哪些启示?从高考数学命题改革看高三数学备考方略一、从?中国高考评价体系?说起二、关于高考数学命题难度的刍议三、数学命题改革对高三备考的启示从高考数学命题改革看高三数学备考方略一、从?中国高考评价体系?说起赶考,是植根于中华民族文化基因的求学之路的神圣使命。由此使得高考具有了指挥棒的功能。与其遮掩,不如成认,进而通过考试评价改革倒逼教育教学改革。一、从?中国高考评价体系?说起1.高考的目标与功能

◎一核:〔为什么考?〕立德树人—党的教育的总目标;效劳选才—高考的现实目标;引导教学—高考的指挥棒作用.一、从?中国高考评价体系?说起情境的价值定位:宏扬中华民族的优良传统;传递正确的价值观;反映国家建设开展的巨大成就……

1.高考的目标与功能〔一核之立德树人〕突出人才选拔的要求:考试命题要符合高校在选拔人才方面对学生学科能力的要求,重在学科本质的理解和进一步学习的潜能的考查.1.高考的目标与功能〔一核之效劳选才〕只能“按套路出牌〞,诸如哪些内容只能是什么题型、哪些内容只能怎么考、解答题第1小题要“送分〞,改变了就不能适应,这不符合人才选拔的要求.1.高考的目标与功能〔一核之引导教学〕南水北调的新情境,反映了国家建设开展的巨大成就。1.高考的目标与功能〔一核之立德树人〕此题本不难,但或许有不少同学叫难。这是被“反刷题〞击中要害了:其一是新情境带来的难度—文字多,表述冗繁;其二是条件概率高考很少出题,此题恰好爆了这个冷门。1.高考的目标与功能〔一核之引导教学〕1.高考的目标与功能〔一核之引导教学〕倒逼高中教学改革?中国高考评价体系?成认我国高中教育教学不可回避的“赶考〞的功利取向,希望能过评价体系的改革倒逼教育教学改革.

高考要对教学发挥正面导的向作用,通过创新试题设计,降低大量刷题、机械训练的收益.1.高考的目标与功能

一、从?中国高考评价体系?说起2.考试的内容与立意◎四层:〔考什么?〕

必备知识、关键能力、学科素养和核心价值.2.考试的内容与立意〔四层之必备知识〕对必备知识的必要重视:

必备知识—学生在面对与与数学相关的生活实践或学习探索问题时,有效地从数学的视角认识问题、分析问题和解决问题所必须具备的数学根底知识、根本技能、根本思想和根本活动经验.虽有南水北调的新情境,但数学的本质就是棱台的上、下底面积和高求体积,套公式即可。2.考试的内容与立意〔四层之必备知识〕2.高考的内容与立意〔四层之必备知识〕数学知识是形成数学能力和数学核心素养的根底.高考对数学根底知识的重视是一惯的和不变的.这是一道集合的根本运算题,谁也无法说它难。

这是一道复数的简单运算题,容易到几乎可以看出答案。对数学根底知识的重视是一惯的和不变的.平面向量根本定理的直接运用,化归与转化的方向十清楚确。对数学根底知识的重视是一惯的和不变的.虽有南水北调的新情境,但数学的本质就是棱台的上、下底面积和高求体积,套公式即可。对数学根底知识的重视是一惯的和不变的.对数学根底知识的重视是一惯的和不变的.2.高考的内容与立意〔四层之关键能力〕关键能力—从学科的角度发现问题、提出问题、分析问题和解决问题的能力.此题本也不难,因为b=0时的同类问题是常见的。这里无非是将函数图象“上移〞了“b〞个单位。条件中T的范围是为确定的范围用的,由对称中心可确定b的值和满足的条件,进而求出直至.2.高考的内容与立意〔四层之关键能力〕

稍作变形:

,直接运用二项式定理进行计算。2.高考的内容与立意〔四层之关键能力〕画个草图,一条切线方程可以看出来。2.高考的内容与立意〔四层之关键能力〕根底知识—知三求二,根本方法—裂项相消法的简单应用。2.高考的内容与立意〔四层之关键能力〕2.高考的内容与立意〔四层之关键能力〕◎等差数列通项公式在新情境中的运用。◎累加法或累乘法的运用。2.高考的内容与立意〔四层之关键能力〕◎通项公式的倒数规律与裂项法的运用。2.高考的内容与立意〔四层之素养立意〕学科素养—数学素养是数学能力的灵魂。正确地发挥直观想象、数学抽象、逻辑推理、数学运算、数据分析、数学建模等数学核心素养的作用,分析和处理生活实践或学习探索中的问题,就是数学能力的灵魂。2.高考的内容与立意〔四层之素养立意〕每一道题目都有特定的核心素养考查目标.六个核心素养中,虽然它们是相互联系和融会贯穿的,但在具体的问题中总还是有所侧重的.因此,不同的试题在数学素养立意方面,都有各自的侧重点.常规题型,考查数学运算和逻辑推理素养,和往年比较稍有拔高。2.考试的内容与立意〔四层之素养立意〕(2)考试的内容与立意〔四层之素养立意〕(2)高考的内容与立意〔四层之素养立意〕2.考试的内容与立意〔四层之价值导向〕核心价值的总体定位:

价值导向指的是通过学生面对现实的问题情境时表现出来的情感态度和价值观,考查学生的政治素养、道德品质、以及数学的理性精神和思维与表达.2.考试的内容与立意〔四层之价值导向〕核心价值的总体定位:

价值导向指的是通过学生面对现实的问题情境时表现出来的情感态度和价值观,考查学生的政治素养、道德品质、以及数学的理性精神和思维与表达.◎捕情境与问题所携载的正能量和价值引领◎面对困难时所表现出来的意志品质2.考试的内容与立意〔四层之价值导向〕2022年高考数学命题在内容比例、问题情境、题目结构、对运算的要求等方面,发生了较大的变化。面对这种现象,考生表现出什么样的情感态度和意志品质,与评价分数关系极大。真实难度没变,但不迁就历年来“一半证明一半算〞的题型结构了。2.考试的内容与立意〔四层之价值导向〕题目背景类同2021年全国一卷相应题,但〔1〕改为求直线方程,相比以前的求圆锥曲线方程少了“套路〞,增加了计算量。2.考试的内容与立意〔四层之价值导向〕1.高考的目标与功能

一、从?中国高考评价体系?说起2.考试的内容与立意3.考题的功能与匹配3.考题的功能与匹配强化根底知识的重要地位—根底性:根底性—主要包括学科内容的通和通法、以及典型问题,要求从生活实践与学习探索中最根本的问题出发,创设与知识能力相匹配的载体,考查对学科根本概念、根本原理、根本技能和思想方法的理解和掌握程度.根底题是各学科高考分数的根本保障.高考命题要满足不同的区分度要求,必须有一定数量的根底题.高考没有因加强创新,凸显选拔功能,而轻视根底知识.综合性、应用性、创新性问题的解决,其立足点也在根底知识.2022年高考数学“难于天际〞“吊打考生〞。其实试卷中还是有不少的根底性试题的。学科内容的整合与应用:

从学科内容选择的角度看,高考命题加强以整合与综合的复杂问题情境作为载体,注重学科知识、能力内部的整合及其综合运用.学科内容的整合与应用—综合性:

从学科内容选择的角度看,高考命题加强以整合与综合的复杂问题情境作为载体,注重学科知识、能力内部的整合及其综合运用.

在知识的交汇点设置综合性、能力型试题,这其实是高考数学命题的一贯做法.

重视应用性的问题情境—应用性:

高考数学命题的应用性,既指试题以贴近生活、社会、时代的生活实践的材料为载体,理论联系实际地考查学生的能力水平,又指应用熟悉的数学方法或数学模型解决数学问题。

高考数学命题的应用性,要求试题以贴近生活、社会、时代的生活实践的材料为载体,理论联系实际地考查学生的能力水平.例如,数学探究与建模,作为一个主题渗透于一切内容的教学之中,因此重视应用性也是高中数学课程的特点所决定的.模型识别和运用,在高考数学命题中十分多见.都是这个道理.

高考数学命题的创新性,表现在创设合理问题情境,设置新颖的试题呈现方式和设问方式,考查学生在新颖的或陌生的情境中主动思考,完成开放性或探究性的任务,发现新问题、找到新规律、得出新结论的能力和水平.

高考命题的创新性,表现在创设合理的问题情境,设置新颖的试题呈现方式和设问方式,考查学生在新颖的或陌生的情境中主动思考,完成开放性或探究性的任务,发现新问题、找到新规律、得出新结论的能力和水平.例如,多项选择题和结构不良题是2022年高考数学命题的再一次成功实践.高考数学命题的创新性,还表现在敢于不默守成规,打破思维定型。2022年的高考数学命题在这个方面是迈出了重要步伐的。如立体几何解答题没有因循“一半证明一半计算〞的结构;解析几何解答题第〔1〕小题变为求直线的斜率;函数与导数解答题第〔1〕小题也不“送分〞了,而且需要用“二阶导数〞研究单调性。

一、从?中国高考评价体系?说起二、关于高考数学命题难度的刍议三、数学命题改革对高三备考的启示从高考数学命题改革看高三数学备考方略二、关于高考数学命题难度的刍议2022年高考后,数学试题难度成为网络热搜。甚至有网友戏言:难于天际,吊打考生。二、关于高考数学命题难度的刍议二、关于高考数学命题难度的刍议1.数学试题并非绝对的难2.高考数学需要合理的难度匹配3.欣然接受数学命题的改革创新2022年高考数学一卷整体难度较大,但也有着一定数量根底性试题,是符合?中国高考评价体系?所倡导的根底性、综合性、应用性和创新性要求的。1.数学试题并非绝对的难二、关于高考数学命题难度的刍议1.数学试题并非绝对的难2.高考数学需要合理的难度匹配3.欣然接受数学命题的改革创新难度本是一个相对概念,这个是不难理解的。相对于往年来说,2022年的高考数学一卷,整体难度较大,这是确定的。2.高考数学需要合理的难度匹配(1)不迁就题型,不回避计算

少考一点算,多考一点想。这是曾经评价高考数学命题能力立意时常用的语句。但今年的试题对总体对运算的要求较高,鲜见可以看出的运算结果的试题,有些运算中的数据也不是通常意义下的友好。2.高考数学需要合理的难度匹配1.不迁就题型,不回避计算求过某点的曲线的切线方程方法的逆向运用,而且某点不是切点,数字也不是十分友好的,以至于运算中信心缺乏。〔1〕不迁就题型,不回避计算真实难度没变,但不迁就历年来“一半证明一半算〞的题型结构了。〔1〕不迁就题型,不回避计算题目背景类同2021年全国一卷相应题,但〔1〕改为求直线的斜率,相比以前的求圆锥曲线方程少了“套路〞,增加了计算量。〔1〕不迁就题型,不回避计算

貌似平凡,但算法选择和过程推进可以难例优秀学生。〔1〕不迁就题型,不回避计算O1ABCDSO策略1:建立体积关于某个变量的函数〔选择什么作为变量?〕〔1〕不迁就题型,不回避计算O1ABCDSO策略1:建立体积关于某个变量的函数〔选择什么作为变量?〕策略2:画示意图,从条件的必要性入手求半径R〔变量有谱了?〕1.不迁就题型,不回避计算O1ABCDSO策略1:建立体积关于某个变量的函数〔选择什么作为变量?〕策略2:画示意图,从条件的必要性入手求半径R〔变量有谱了?〕策略3:算法的优化选择.〔1〕不迁就题型,不回避计算〔1〕不迁就题型,不回避计算

既要推理,还要运算。推理与运算协同推进。xOyF2F1ED(1)不迁就题型,不回避计算2.高考数学需要合理的难度匹配(2)植根根底性,加强综合性多项选择题的最突出功能就是在植根根底的条件下,彰显综合性。此题不辱使命。〔2〕植根根底性,加强综合性〔2〕植根根底性,加强综合性〔2〕植根根底性,加强综合性〔2〕植根根底性,加强综合性〔2〕植根根底性,加强综合性(1)不迁就题型,不回避计算2.高考数学需要合理的难度匹配(2)植根根底性,加强综合性(3)在灵活应用中凸显创新指数式和对数式的大小比较是常考题,通常的思路是运用指数函数、对数函数的单调性构造不等关系,有还用0、1、-1等数作为中介数进行比较。此题这个思路怎么也行不通了,需要更高维度的创新思考。〔3〕在灵活应用中凸显创新

此题以两个函数有相同的最小值为总条件,在形式和结构上有一定的新意。〔3〕在灵活应用中凸显创新函数的定义域和参数的取值范围,隐含于条件之中,这是命题创新构成了难度的根本点。

依程序化步骤将求

的值化归为解超越方程①,也有较大的创新力度。

利用二阶导数研究函数的单调性,解超越方程,在选材立意创新方面,迈出了重要的步伐。

函数与导数的程序化算法与直观想象相结合,解题思路呼之欲出。正确的“设〞和“列〞,考查数学思考的敏捷性和成熟性。xOy(1,1)(0,1)(1)不迁就题型,不回避计算2.高考数学需要合理的难度匹配(2)植根根底性,加强综合性(3)在灵活应用中凸显创新(4)用新情境制约刷题战法(4)用新情境制约刷题战法(4)用新情境制约刷题战法此题本不难,但或许有不少同学叫难。这是被“反刷题〞击中要害了。其一是新情境带来的难度—文字多,表述冗繁;其二是条件概率高考很少出题,此题恰好爆了这个冷门。(4)用新情境制约刷题战法〔1〕直接用公式计算,“对表〞比较即可得出结论。(4)用新情境制约刷题战法〔1〕直接用公式计算,“对表〞比较即可得出结论。〔2〕①不过是代入条件概率计算公式,再进行简单的恒等变形。(4)用新情境制约刷题战法〔1〕直接用公式计算,“对表〞比较即可得出结论。〔2〕①不过是代入条件概率计算公式,再进行简单的恒等变形。〔2〕②由表中数据估计条件概率,再代入①的式子计算得出结论。2.高考数学需要合理的难度匹配二、关于高考数学命题难度的刍议1.数学试题并非绝对的难2.高考数学需要合理的难度匹配3.欣然接受数学命题的改革创新3.欣然接受数学命题的改革创新一、从?中国高考评价体系?说起二、关于高考数学命题难度的刍议三、数学命题改革对高三备考的启示从高考数学命题改革看高三数学备考方略课程改革、高考评价改革两边夹,使高中o数学教育教学从观念到过程发生了许多变化。这种变化是积极的,我们只能接受并适应它。新的形势下,如何抓住新的机遇,是我们必须认真思索的问题。三、数学命题改革对高三备考的启示1.在培育情感态度方面发力积极的、稳定的、向上的情感态度,是数学核心素养的重要组成局部,是学生开展的不竭动力.无论是立德树人、效劳选材,或是引导教学,开展学生的健康的情感态度和科学的世界观,是新背景下数学教育教学的重要方面。三、数学命题改革对高三备考的启示1.在培育情感态度方面发力有想法,立志于为国家、社会作出更大的奉献,同时回馈父母的养育之恩和老师的教育之恩,自己也因此有幸福美好的未来。特别是因为数学在科学技方面的决定作用,和在中美科技开展的拔河比赛中目前还处于被动的条件下,更有利于激发学生学好数学的潜力。1.在培育情感态度方面发力有方法,在数学学习方法和思维品质方面,能使学生建立适合于自己的根本定型。1.在培育情感态度方面发力

有行动,能让学生养成言必信、行必果的作风和态度。这也是数学的理性精神。

新背景下在培育情感态度方面的这种发力,将收到事半功倍的效果。1.在培育情感态度方面发力三、数学命题改革对高三备考的启示2.让四基成为学科能力的保障四基是一个数学核心素养层面的概念。其内涵是:根底知识:数学的概念、方法、公式、定理及其结构体系.2.让四基成为学科能力的保障根底知识:数学的概念、方法、公式、定理及其结构体系.根本技能:数学根底知识在运用过程中的能力表征,数学的根底知识要理解、掌握,但灵活运用更为关键.2.让四基成为学科能力的保障根底知识:数学的概念、方法、公式、定理及其结构体系.根本技能:数学根底知识在运用过程中的能力表征,数学的根底知识要理解、掌握,但灵活运用更为关键.根本思想:具有全局性或统领作用的数学观念.如数学的函数与方程思想、化归与转化思想、分类与整合的思想、数形结合思想等等.2.让四基成为学科能力的保障根底知识:数学的概念、方法、公式、定理及其结构体系.根本技能:数学根底知识在运用过程中的能力表征,数学的根底知识要理解、掌握,但灵活运用更为关键.根本思想:具有全局性或统领作用的数学观念.如数学的函数与方程思想、化归与转化思想、分类与整合的思想、数形结合思想等等.根本经验:在数学学习和训练中,逐步形成的稳定的定型.在适应性考试评价中,根本活动经验发挥着重要作用.纠错本和典题集是积累数学活动经验的抓手。2.让四基成为学科能力的保障任何学科的教学都要植根根底。但所谓根底,不只是简单地记住一些条条框框,而在于从根底知识、根本方法、根本思想到根本活动经验的一个整体概念.根底打好了,能力或素养的高水平才是有源之水,高考高分才能水到渠成.2.让四基成为学科能力的保障1.在培育情感态度方面发力三、数学命题改革对高三备考的启示2.让四基成为学科能力的保障3.从四个维度开展核心素养核心素养是统领新课程、新高考的系统性理论。开展数学核心素养,是数学教学的出发点和目的地。3.从四个维度开展核心素养核心素养是统领新课程、新高考的系统性理论。开展数学核心素养,是数学教学的出发点和目的地。开展数学核心素养是一个十分复杂的系统工程。从校本研修和数学教学的创造性来说,下面的四个维度是行之有效的路径。3.从四个维度开展核心素养〔1〕情境与问题

我们都可以充分地感受到这样一个事实:新课程教材变厚了,厚在增加了大量的情境化问题,大多核心概念都是在特定的情境中提炼出来的;另外,无情境不成题,这是高考数学命题的新的面貌。3.从四个维度开展核心素养〔1〕情境与问题

我们都可以充分地感受到这样一个事实:新课程教材变厚了,厚在增加了大量的情境化问题,大多核心概念都是在特定的情境中提炼出来的;另外,无情境不成题,这是高考数学命题的新的面貌。为什会出现这样?我想应该从情境化问题的功能和高考评价选拔的目标说起!3.从四个维度开展核心素养〔1〕情境与问题情境的意义在哪里?首先是价值导向——通过问题情境传递正能量,陶冶情操,开展正确的情感态度和价值观。3.从四个维度开展核心素养〔1〕情境与问题情境的意义在哪里?首先是价值导向——通过问题情境传递正能量,陶冶情操,开展正确的情感态度和价值观;再者是素养立意——这是课程的魂,也是“中国高考评价体系〞中“四层〞的重要方面。3.从四个维度开展核心素养〔1〕情境与问题如何认识情境化问题与功能?

按情境的内容分——生活情境、文化情境、自然情境、科学情境、学科情境等。当然,这种分类是表象的,在价值导向方面有它的意义,但教学中不能停留认识的表象,而要透过表象洞察其教育价值和与学科的联系。情境不过是一个“载体〞而已,其功能也在于价值导向。从较为复杂的情境中提炼出学科问题的本质,进而将实际问题化归为学科问题,诸如条件是什么?解题目标是什么?不同的条件或条件与结论是怎样相互联系的?需要解题者需要对情境与问题进行学科化处理。〔1〕情境与问题情境不过是一个“载体〞而已,其功能也在于价值导向。从较为复杂的情境中提炼出学科问题的本质,进而将实际问题化归为学科问题,诸如条件是什么?解题目标是什么?不同的条件或条件与结论是怎样相互联系的?需要解题者需要对情境与问题进行学科化处理。〔1〕情境与问题这个过程,不但有利于开展学科核心素养,还有利于开展诸如个性心理、阅读理解力等综合素养。3.从四个维度开

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论