版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1五年级2023年下册数学知识点重点(8篇)五班级2023年下册数学学问点重点(8篇)
五班级的数学课都有哪些学问点呢?在我们的学习时代,许多人都常常追着老师们要学问点吧,学问点也可以理解为考试时会涉及到的学问,也就是大纲的分支。下面是我给大家整理的五班级2023年下册数学学问点重点,仅供参考盼望能关心到大家。
五班级2023年下册数学学问点重点篇1
1、⑴两个连续的自然数只有公因数1,它们的最大公因数是1,最小公倍数是这两个数的积。如:3和4是两个连续的自然数,它们的最大公因数是1,最小公倍数是3×4=12。
⑵两个不同的质数只有公因数1,它们的最大公因数是1,最小公倍数是这两个质数的积。如:5和7是两个不同的质数,它们的最大公因数是1,最小公倍数是35。
⑶一个数是另一个数的倍数,它们的最大公因数是较小数,最小公倍数是较大数。如:32是8的倍数,它们的最大公因数是8,最小公倍数是32。
2、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
3、(1)把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。约分时是依据分数的基本性质。
(2)约分可以一次性约分(用最大公因数分别去除分子、分母)
也可以逐步约分(用公因数分别去除分子、分母)
4、(1)比分数的大小:分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
(2)、分数比较大小的一般方法:同分子比较;通分分比较;化成小数比较
5、(1)把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分时是依据分数的基本性质。
(2)通常用分子和分母的最小公倍数作公分母比较合适。
6、小数化成分数:看小数的位数,小数表示是非常之几,百分之几,千分之几……的数,所以可以直接写成分母是10、100、1000……的分数,在化简。
7、分数化成小数的方法:
(1)利用分数的基本性质将分母化成整十整百…的分数
(2)利用分数与除法的关系,用分子除以分母,除不尽时,要依据需要按“四舍五入”法保留几位小数。一般保留两位小数。
8、一个最简分数,假如分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不行以。
9、同分母分数加、减法法则:分母不变,分子相加、减。结果要是最简分数。
10、异分母分数要先通分才能够相加、减。
11、分数加减混合运算的挨次和整数的相同。整数加法的交换律、结合律对于分数加法同样适用。
数学圆的面积学问点
1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用渐渐靠近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化简单为简洁,化抽象为详细。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽
圆的`周长的一半=长方形的长
由于:长方形面积=长×宽
所以:圆的面积=圆周长的一半×圆的半径
S圆=πr×r
圆的面积公式:S圆=πr2
数学测量学问点
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。
1米=10分米,1分米=10厘米,1厘米=10毫米
1米=100厘米1千米(公里)=1000米
10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000。
1吨=1000千克1千克=1000克
五班级2023年下册数学学问点重点篇2
1、分数数的加法和减法
(1)同分母分数加、减法(分母不变,分子相加减)
(2)异分母分数加、减法(通分后再加减)
(3)分数加减混合运算:同整数。
(4)结果要是最简分数
2、带分数加减法:
带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
附:详细解释
(一)同分母分数加、减法
1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。
2、计算的结果,能约分的要约成最简分数。
(二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:
异分母分数相加、减,要先通分,再根据同分母分数加减法的方法进行计算。
(三)分数加减混合运算
1、分数加减混合运算的运算挨次与整数加减混合运算的挨次相同。
在一个算式中,假如有括号,应先算括号里面的,再算括号外面的;假如只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
数学面积单位间的进率
1、长度单位:米、分米、厘米--进率是10;1米=10分米=100厘米=1000毫米
2、面积单位:平方厘米、平方分米、平方米--进率是100;
1平方米=100平方分米,1平方分米=100平方厘米,1平方米=10000平方厘;
3、“公顷”(测量菜地面积、果园面积)和“平方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;
4、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。
5、计量路程或测量铁路、河流等比较长的物体时,一般用千米(km)作单位,又叫公里。(四)各图形的特点:长方形的特点:对边相等,四个角都是直角;
数学圆的周长学问点
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形全部边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。
推导圆周长最简洁的方法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依靠于圆的周长或面积的,为了避开规律上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依靠于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。假如不需要更多的理论争论,上面的做法就足够了。
五班级2023年下册数学学问点重点篇3
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按挨次找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满意2、3、5的倍数,实际是求2×3×5=30的倍数。
5)假如一个数同时是2和5的倍数,那它的个位上的数字肯定是0。
3、完全数:除了它本身以外全部的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0。
关系:奇数+、—偶数=奇数
奇数+、—奇数=偶数
偶数+、—偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类。
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘肯定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数
质数×质数=合数
6、最大、最小
A的最小因数是:1;
A的最大因数是:A;
A的最小倍数是:A;
最小的自然数是:0;
最小的奇数是:1;
最小的偶数是:0;
最小的质数是:2;
最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数(一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
两数互质的特别状况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数肯定互质;
⑷2和全部奇数互质;
⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数(除到互质为止,把全部的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
假如两数是倍数关系时,那么较小的数就是它们的最大公因数。
假如两数互质时,那么1就是它们的最大公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把全部的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把全部的除数和商连乘起来)
假如两数是倍数关系时,那么较大的数就是它们的最小公倍数。
假如两数互质时,那么它们的积就是它们的最小公倍数。
11、求最大公因数和最小公倍数方法
用12和16来举例
1、求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:
2×2=4(相同乘)
最小公倍数是:
2×2×3×2×2=48(相同乘×不同乘)
五班级2023年下册数学学问点重点篇4
1.横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。
2.用有挨次的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。
3.用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。
4.写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。
5.数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。
6.一组数对只能表示一个位置。
7.表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的其次个数相同。
分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:12(5)×6,表示:6个12(5)相加是多少,还表示12(5)的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×12(5),表示:6的12(5)是多少。
7(2)×12(5),表示:7(2)的12(5)是多少。
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、留意:能约分的先约分,然后再乘,得数必需是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
同步练习
1.竖排叫做(),横排叫做()。列数()数,行数()数。
2.用数对表示物体的位置时,应先写()数,再写()数。
3.亮亮在第2列,第3行的位置,可以用数对表示为()。
4.点A(3,6)向右平移3格用数对表示是(),向左平移2格用数对表示是()。
5.点B(3,4)向上平移2格后用数对表示是(),向下平移2格后用数对表示是()。
质数和合数应用
1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为查找素数的过程),将会由于找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增加耐用度削减故障。
圆的学问点
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
五班级2023年下册数学学问点重点篇5
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。
4、分数与除法
A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/5
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≥1
3、带分数:带分数由整数和真分数组成的分数。带分数1.
4、真分数1≤假分数
真分数1带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:
(2)整数化为假分数,用整数乘以分母得分子如:
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
(4)1等于任何分子和分母相同的分数。如:
7、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,假如分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不行以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/5
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4可以化成8/20和5/20
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
如:
0.3=3/100.03=3/1000.003=3/1000
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000……
如:3/10=0.33/5=6/10=0.6
1/4=25/100=0.25
方法二:用分子÷分母
如:3/4=3÷4=0.75
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
12、比分数的大小:
分母相同,分子大,分数就大;
分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
1/2=0.51/4=0.253/4=0.75
1/5=0.22/5=0.43/5=0.6
4/5=0.8
1/8=0.1253/8=0.3755/8=0.6257/8=0.8751/20=0.051/25=0.04
14、两个数互质的特别推断方法:
①1和任何大于1的自然数互质。
②2和任何奇数都是互质数。
③相邻的两个自然数是互质数。
④相邻的两个奇数互质。
⑤不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数状况下),一般状况下这两个数也都是互质数。
15、求最大公因数的方法:
①倍数关系:最大公因数就是较小数。
②互质关系:最大公因数就是1
③一般关系:从大到小看较小数的因数是否是较大数的因数。
如何提高数学成果
仔细听讲的
这里的听讲,应包括两方面的意思:一是指在课堂上,精力要集中,不做与学习无关的动作,要仔细倾听老师的点拨、指导,要抓住新学问的生长点,新旧学问的联系,弄清公式、法则的来龙去脉。二是说要仔细地听其他同学的发言,对他人的观点、回答能做出评价和必要的补充。
仔细审题
审题是正确解题的前提,养成仔细审题的习惯,不但是提高学习成果的保障,而且能使孩子从小就具有做事细心、踏实的品性。
仔细计算
计算是学校生数学学习中最基本的技能。一个从小就能慎重对待计算的人,在以后的行事中就不会轻易犯下草率从事的错误。所以,家长要训练孩子镇静、冷静的学习态度。不管题目难易都要仔细对待。对于孩子仔细计算有进步的时候要赐予鼓舞表扬,准时树立自信念。
检验改错
在数学学问的探究中,有错误是难免的,正如在人生的旅程中,总是难免有各式各样的错误。因此,检验改错的习惯正是孩子必不行少的一个进展性学习习惯。由此,在日常练习中应把检查和验算当作不行缺少的的步骤,养成检验的好习惯。
数学统计学问点
(一)简洁的数据分析:在画条形图时要先利用格尺找准数量,做好标记后再画。
(二)求平均数用移多补少的方法:
平均数=总数量/总份数
总数量=平均数×总份数
总份数=总数量/平均数
五班级2023年下册数学学问点重点篇6
第一课时分数的产生、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”,也叫整体“1”。
3、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数。
4、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
5、一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。
6、一个分数的分母是几,它的分数单位就是几分之;分子是几,它就有几个这样的分数单位。
其次课时分数与除法
1、分数与除法的关系:被除数÷除数=被除数/除数,用字母表示为a÷b=a/b(b≠0)
2、“求一个数是另一个数的几分之几”和“求一个数是另一个数的几倍”,计算方法相同,都可以用除法计算,即一个数÷另一个数=一个数是另一个数的几分之几(或几倍)。
(二)真分数和假分数
1、真分数的意义;分子比分母小的分数叫做真分数。
2、真分数的特征:真分数小于1。
3、假分数的意义:分子比分母大或分子和分母相等的分数叫做假分数。
4、假分数的特征:假分数大于1或等于。
5、带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。带分数的读法:先读整数部分,再读分数部分,中间加上一个“又”字。带分数的写法:先写整数部分,再写分数部分,分数部分的分数与整数的中间对齐。
6、把假分数化成整数或带分数,依据分数与除法的关系,用分子除以分母:
(1)假如能整除,那么商就是所要化成的整数。
(2)假如能整除,那么商就是带分数的整数部分,余数是带分数的分数部分的分子,分母不变。
(三)分数的基本性质
1、分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
2、利用分数的基本性质,可以把分母不同的分数化成分母相同的分数,还可以把一个分数化为指定分母的分数。
(四)约分
第一课时最大公因数
1、几个数共有的因数叫做这几个数的公因数;其中最大的那个公因数叫做这几个数的最大公因数。
2、求两个数的最大公因数的方法:
(1)列举法:先分别找出两个数的因数,再从中找出公因数,最终找出最大的一个;
(2)筛选法:先找出两个数中较小的因数,再从中圈出另一个数的因数,最终看圈出另一个数的因数,最终看圈出的因数中哪一个最大。
3、解决地砖的边长及最大边长是多少这类问题,实际上就是求两个数的公因数和最大公因数。
其次课时约分
1、约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
2、约分的方法:
(1)逐次约分法:用分子和分母的公因数(1除外)依次去除分子和分母,除到分子和分母的公因数只有1为止。
(2)一次约分法:用分子和分母的最大公因数去除分子和分母。
3、分子和分母只有公因数1的分数叫做最简分数。
(五)通分
第一课时最小公倍数
1、几个数公有的倍数,叫做这几个数的公倍数。其中,最小的一个公倍数叫做这几个数的最小公倍数。
2、求两个数的最小公倍数的方法;
(1)列举法:先分别找出两个数各自的`倍数,再找出这两个数的公倍数和最小公倍数;
(2)筛选法:先写出两个数中叫大数的倍数,再根据从小到大的挨次圈出叫小数的倍数,圈出的第一个数就是它们的最小公倍数。
其次课时通分
1、分母相同、分子不同的两个分数,分子大的分数就大。
2、分子相同分母不同的两个分数,分母小的分数反而较大。
3、通分:把异分母分数化成和原来分数相等的同分母分数。
4、通分的方法:同分时,用原分母的公倍数作公分母,为了计算简便,通常选用原分母的最小公倍数作公分母,然后把每个分数都化成用这个最小公倍数作分母的分数。
(六)分数和小数的互化
1、小数化成分数的方法:小数表示的就是非常之几、百分之几、千分之几…….的数,所以可以直接写成分母是10,100,1000,…….的分数。原来是几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约成最简分数。
2、分数化成小数的方法:
(1)分母不是10,100,1000,…的分数化成小数,可以直接去掉分母,看1后面有几个0,就从分子的右边起向左数出几位,点上小数点,位数不够时,用0补足。
(2)分母不是10,100,1000,…的分数化成小数,依据分数与除法的关系,用分子除以分母,除不尽时按“四舍五入”法保留几位小数。
数学两位数乘两位数速算绝技
(A)60×20=『』,把60×20看作60乘2,得120,20是2的10倍,再将得数扩大10倍得1200,心算过程是60×2=120,2的后面有一个0,积120后面加一个0,得1200.
(B)估算时,把一个两位数看成是整十数进行估算,如39×40,把39看成40,40×40=1600,39×40~1600.51×30=『』,估算过程是50×30=1500,51×30~1500.
(C)35×11+『』,把35乘10得350,再用35×1=35,350+35=385,心算过程是:35×11=350+35=385,又如43×11=430+43=473.
(D)23×19=『』,把19看作20来乘,多乘龙1个23,再减去23,心算过程是:23×20-23=460-23=437,如45×21=『』,把21看作20来乘,少乘1个45,再加上45,45×20+45=900+45=945.
(E)34×15=『』,把34×10后再加34×5,由于34×5=34×10/2=340/2=170,所以34×15的心算过程是:340+340/2=340+170=510.
学数学三角形的体积公式
三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
三角形计算公式
1、两边之和大于第三边,两边之差小于第三边。
2、大角对大边。
3、周长c=三边之和a+b+c
4、面积:
s=1/2ah(底x高/2)
s=1/2absinC(两边与夹角正弦乘积的一半)
s=1/2acsinB
s=1/2bcsinA
5、正弦定理:
sinA/a=sinB/b=sinc/C
6、余弦定理:
a^2=b^2+c^2-2bccosA
b^2=a^2+c^2-2accosB
c^2=a^2+b^2-2abcosA
五班级2023年下册数学学问点重点篇7
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b=(b≠0)。
4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度旅行社与旅游保险合作框架协议3篇
- 二零二五年度不动产抵押贷款债权让与合同模板3篇
- 二零二五版绿城物业智能安防系统升级合同4篇
- 2025版全新注塑机购销合同(含设备安装与调试)
- 2025年食品添加剂与添加剂原料供货协议书3篇
- 2025版小额贷款公司合作协议范本2篇
- 二零二五年度企业员工沟通技巧培训合同8篇
- 二零二五年度企业信用评估与评级合同
- 2025年度标准住宅转租服务合同范本3篇 - 副本
- 2025年度多功能库房及场地租赁合同规范文本2篇
- 牛津上海版小学英语一年级上册同步练习试题(全册)
- 室上性心动过速-医学课件
- 建设工程法规及相关知识试题附答案
- 中小学心理健康教育课程标准
- 四年级上册脱式计算400题及答案
- 新课标人教版小学数学六年级下册集体备课教学案全册表格式
- 人教精通版三年级英语上册各单元知识点汇总
- 教案:第三章 公共管理职能(《公共管理学》课程)
- 诺和关怀俱乐部对外介绍
- 玩转数和形课件
- 保定市县级地图PPT可编辑矢量行政区划(河北省)
评论
0/150
提交评论