一天搞懂深度学习PPT_第1页
一天搞懂深度学习PPT_第2页
一天搞懂深度学习PPT_第3页
一天搞懂深度学习PPT_第4页
一天搞懂深度学习PPT_第5页
已阅读5页,还剩300页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DeepLearningTutorial李宏毅Hung-yiLee1

2Deeplearning

attractslotsofattention.Ibelieveyouhaveseenlotsofexcitingresultsbefore.Thistalkfocusesonthebasictechniques.DeeplearningtrendsatGoogle.Source:SIGMOD/JeffDean22023/9/3OutlineLectureI:IntroductionofDeepLearningLectureII:VariantsofNeuralNetworkLectureIII:BeyondSupervisedLearning32023/9/3LectureI:

Introductionof

DeepLearning4

2OutlineIntroductionofDeepLearning“HelloWorld”forDeepLearningTipsforDeepLearning52023/9/3MachineLearning

≈LookingforaFunctionSpeechRecognitionImageRecognitionPlayingGoDialogueSystem“Cat”“Howareyou”“5-5”“Hello”“Hi”(whattheusersaid)(systemresponse)(nextmove)62023/9/3FrameworkAsetoffunction“cat”“dog”“money”“snake”Model“cat”ImageRecognition:72023/9/3FrameworkAsetoffunction“cat”ImageRecognition:ModelTrainingDataGoodnessoffunctionfBetter!“monkey”“cat”“dog”functioninput:functionoutput:SupervisedLearning82023/9/3FrameworkAsetoffunction“cat”ImageRecognition:ModelTrainingDataGoodnessoffunctionf“monkey”“cat”“dog”Pickthe“Best”FunctionUsing“cat”TrainingTestingStep1Step2Step392023/9/3ThreeStepsforDeepLearningStep1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionNeuralNetwork102023/9/3NeuralNetwork…biasweightsNeuron………AsimplefunctionActivationfunction112023/9/3NeuralNetworkbiasActivationfunctionweightsNeuron1-2-112-114SigmoidFunction0.98122023/9/3NeuralNetworkDifferentconnectionsleadtodifferentnetworkstructures

Theneuronshavedifferentvaluesofweightsandbiases.132023/9/3FullyConnectFeedforwardNetworkSigmoidFunction1-11-21-1104-20.980.12142023/9/3FullyConnectFeedforwardNetwork1-21-1104-20.980.122-1-1-23-14-10.860.110.620.8300-221-1152023/9/3FullyConnectFeedforwardNetwork1-21-1100.730.52-1-1-23-14-10.720.120.510.8500-22

00Thisisafunction.Inputvector,outputvectorGivennetworkstructure,defineafunctionset162023/9/3OutputLayerHiddenLayersInputLayerFullyConnectFeedforwardNetworkInputOutputLayer1…………Layer2……LayerL…………………………y1y2yMDeepmeansmanyhiddenlayersneuron172023/9/3WhyDeep?UniversalityTheoremReference

forthereason:/chap4.htmlAnycontinuousfunctionfCanberealizedbyanetworkwithonehiddenlayer(givenenoughhiddenneurons)Why“Deep”neuralnetworknot“Fat”neuralnetwork?182023/9/3LogiccircuitsconsistsofgatesAtwolayersoflogicgatescanrepresentanyBooleanfunction.UsingmultiplelayersoflogicgatestobuildsomefunctionsaremuchsimplerNeuralnetworkconsistsofneuronsAhiddenlayernetworkcanrepresentanycontinuousfunction.UsingmultiplelayersofneuronstorepresentsomefunctionsaremuchsimplerlessgatesneededLogiccircuitsNeuralnetworklessparameterslessdata?Morereason:/watch?v=XsC9byQkUH8&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=13WhyDeep?Analogy192023/9/38layers19layers22layersAlexNet(2012)VGG(2014)GoogleNet(2014)16.4%7.3%6.7%/slides/winter1516_lecture8.pdfDeep=Manyhiddenlayers202023/9/3AlexNet(2012)VGG(2014)GoogleNet(2014)152layers3.57%ResidualNet(2015)Taipei101101layers16.4%7.3%6.7%Deep=ManyhiddenlayersSpecialstructure212023/9/3OutputLayerSoftmaxlayerastheoutputlayerOrdinaryLayerIngeneral,theoutputofnetworkcanbeanyvalue.Maynotbeeasytointerpret222023/9/3OutputLayerSoftmaxlayerastheoutputlayerSoftmaxLayer3-312.7200.050.880.12≈0

232023/9/3ExampleApplicationInputOutput16x16=256……Ink→1Noink→0……y1y2y10Eachdimensionrepresentstheconfidenceofadigit.is1is2is0……0.10.70.2Theimageis“2”242023/9/3ExampleApplicationHandwritingDigitRecognitionMachine“2”…………y1y2y10is1is2is0……Whatisneededisafunction……Input:256-dimvectoroutput:10-dimvectorNeuralNetwork252023/9/3OutputLayerHiddenLayersInputLayerExampleApplicationInputOutputLayer1…………Layer2……LayerL……………………“2”……y1y2y10is1is2is0……AfunctionsetcontainingthecandidatesforHandwritingDigitRecognitionYouneedtodecidethenetworkstructuretoletagoodfunctioninyourfunctionset.262023/9/3FAQQ:Howmanylayers?Howmanyneuronsforeachlayer?Q:Canwedesignthenetworkstructure?Q:Canthestructurebeautomaticallydetermined?Yes,butnotwidelystudiedyet.TrialandErrorIntuition+ConvolutionalNeuralNetwork(CNN)inthenextlecture272023/9/3HighwayNetworkResidualNetworkHighwayNetworkDeepResidualLearningforImageRecognition/abs/1512.03385TrainingVeryDeepNetworks/pdf/1507.06228v2.pdf+copycopyGatecontroller282023/9/3InputlayeroutputlayerInputlayeroutputlayerInputlayeroutputlayerHighwayNetworkautomaticallydeterminesthelayersneeded!292023/9/3ThreeStepsforDeepLearningStep1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunction302023/9/3TrainingDataPreparingtrainingdata:imagesandtheirlabelsThelearningtargetisdefinedonthetrainingdata.“5”“0”“4”“1”“3”“1”“2”“9”312023/9/3LearningTarget16x16=256…………………………Ink→1Noink→0……y1y2y10y1hasthemaximumvalueThelearningtargetis……Input:y2hasthemaximumvalueInput:is1is2is0Softmax322023/9/3Loss………………………………y1y2y10

“1”……100……LosscanbesquareerrororcrossentropybetweenthenetworkoutputandtargettargetSoftmaxAscloseaspossibleAgoodfunctionshouldmakethelossofallexamplesassmallaspossible.Givenasetofparameters332023/9/3TotalLossx1x2xRNNNNNN…………y1y2yR

…………x3NNy3

Foralltrainingdata…

TotalLoss:

AssmallaspossibleFindafunctioninfunctionsetthatminimizestotallossL342023/9/3ThreeStepsforDeepLearningStep1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunction352023/9/3Howtopickthebestfunction

EnumerateallpossiblevaluesLayerl……Layerl+1……E.g.speechrecognition:8layersand1000neuronseachlayer1000neurons1000neurons106weightsMillionsofparameters362023/9/3GradientDescent

Random,RBMpre-trainUsuallygoodenough

Pickaninitialvalueforw

372023/9/3GradientDescent

Pickaninitialvalueforw

PositiveNegativeDecreasewIncreasew/album/photo/171572850

382023/9/3GradientDescent

Pickaninitialvalueforw

ηiscalled“learningrate”

Repeat

392023/9/3GradientDescent

Pickaninitialvalueforw

Repeat

(whenupdateislittle)

402023/9/3

GradientDescentColor:ValueofTotalLossLRandomlypickastartingpoint412023/9/3

GradientDescentHopfully,wewouldreachaminima…..

Color:ValueofTotalLossL422023/9/3LocalMinimaTotalLossThevalueofanetworkparameterwVeryslowattheplateauStuckatlocalminima

Stuckatsaddlepoint

432023/9/3LocalMinimaGradientdescentneverguaranteeglobalminima

DifferentinitialpointReachdifferentminima,sodifferentresults442023/9/3GradientDescentThisisthe“learning”ofmachinesindeeplearning……Evenalphagousingthisapproach.Ihopeyouarenottoodisappointed:pPeopleimage……Actually…..452023/9/3Backpropagation

libdnn台大周伯威同學開發Ref:/watch?v=ibJpTrp5mcE462023/9/3Step1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionThreeStepsforDeepLearningDeepLearningissosimple……NowIfyouwanttofindafunctionIfyouhavelotsoffunctioninput/output(?)astrainingdataYoucanusedeeplearning472023/9/3Forexample,youcando…….Image

RecognitionNetwork“monkey”“cat”“dog”“monkey”“cat”“dog”482023/9/3Forexample,youcando…….Spamfiltering(/)Network(Yes/No)1/01(Yes)0(No)“free”ine-mail“Talk”ine-mail492023/9/3Forexample,youcando……./Network政治體育經濟“president”indocument“stock”indocument體育政治財經502023/9/3OutlineIntroductionofDeepLearning“HelloWorld”forDeepLearningTipsforDeepLearning512023/9/3Keraskeras.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Theano%20DNN.ecm.mp4/index.html.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RNN%20training%20(v6).ecm.mp4/index.htmlVeryflexibleNeedsomeefforttolearnEasytolearnanduse(stillhavesomeflexibility)YoucanmodifyitifyoucanwriteTensorFloworTheanoInterfaceofTensorFloworTheanoorIfyouwanttolearntheano:522023/9/3KerasFrançoisCholletistheauthorofKeras.HecurrentlyworksforGoogleasadeeplearningengineerandresearcher.Kerasmeans

horn

inGreekDocumentation:http://keras.io/Example:/fchollet/keras/tree/master/examples532023/9/3使用Keras心得感謝沈昇勳同學提供圖檔542023/9/3ExampleApplicationHandwritingDigitRecognitionMachine“1”“Helloworld”fordeeplearningMNISTData:/exdb/mnist/Kerasprovidesdatasetsloadingfunction:http://keras.io/datasets/28x28552023/9/3Kerasy1y2y10……………………Softmax50050028x28562023/9/3Keras572023/9/3KerasStep3.1:ConfigurationStep3.2:Findtheoptimalnetworkparameters

0.1Trainingdata(Images)Labels(digits)582023/9/3KerasStep3.2:Findtheoptimalnetworkparameters/versions/r0.8/tutorials/mnist/beginners/index.htmlNumberoftrainingexamplesnumpyarray28x28=784numpyarray10Numberoftrainingexamples…………592023/9/3Kerashttp://keras.io/getting-started/faq/#how-can-i-save-a-keras-modelHowtousetheneuralnetwork(testing):case1:case2:Saveandloadmodels602023/9/3KerasUsingGPUtospeedtrainingWay1THEANO_FLAGS=device=gpu0pythonYourCode.pyWay2(inyourcode)importosos.environ["THEANO_FLAGS"]="device=gpu0"612023/9/3Demo622023/9/3Step1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionThreeStepsforDeepLearningDeepLearningissosimple……632023/9/3OutlineIntroductionofDeepLearning“HelloWorld”forDeepLearningTipsforDeepLearning642023/9/3NeuralNetworkGoodResultsonTestingData?GoodResultsonTrainingData?Step1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionYESYESNONOOverfitting!RecipeofDeepLearning652023/9/3DonotalwaysblameOverfittingDeepResidualLearningforImageRecognition/abs/1512.03385TestingDataOverfitting?TrainingDataNotwelltrained662023/9/3NeuralNetworkGoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningDifferentapproachesfordifferentproblems.e.g.dropoutforgoodresultsontestingdata672023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningChoosingproperlossMini-batchNewactivationfunctionAdaptiveLearningRateMomentum682023/9/3ChoosingProperLoss………………………………y1y2y10loss“1”……100……targetSoftmax

SquareErrorCrossEntropy

Whichoneisbetter?

……100=0=0692023/9/3DemoSquareErrorCrossEntropySeveralalternatives:https://keras.io/objectives/702023/9/3Demo712023/9/3ChoosingProperLossTotalLossw1w2CrossEntropySquareErrorWhenusingsoftmaxoutputlayer,choosecrossentropy/proceedings/papers/v9/glorot10a/glorot10a.pdf722023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningChoosingproperlossMini-batchNewactivationfunctionAdaptiveLearningRateMomentum732023/9/3Mini-batchx1NN……y1

x31NNy31

x2NN……y2

x16NNy16

Pickthe1stbatchRandomlyinitializenetworkparametersPickthe2ndbatchMini-batchMini-batch

UpdateparametersonceUpdateparametersonceUntilallmini-batcheshavebeenpicked…oneepochRepeattheaboveprocessWedonotreallyminimizetotalloss!742023/9/3Mini-batchx1NN……y1

x31NNy31

Mini-batchPickthe1stbatchPickthe2ndbatch

UpdateparametersonceUpdateparametersonceUntilallmini-batcheshavebeenpicked…oneepoch100examplesinamini-batchRepeat20times752023/9/3Mini-batchOriginalGradientDescentWithMini-batchUnstable!!!Thecolorsrepresentthetotalloss.762023/9/3Mini-batchisFaster1epochSeeallexamplesSeeonlyonebatchUpdateafterseeingallexamplesIfthereare20batches,update20timesinoneepoch.OriginalGradientDescentWithMini-batchNotalwaystruewithparallelcomputing.Canhavethesamespeed(notsuperlargedataset)Mini-batchhasbetterperformance!772023/9/3Demo782023/9/3x1NN……y1

x31NNy31

x2NN……y2

x16NNy16

Mini-batchMini-batchShufflethetrainingexamplesforeachepochEpoch1x1NN……y1

x17NNy17

x2NN……y2

x26NNy26

Mini-batchMini-batchEpoch2Don’tworry.ThisisthedefaultofKeras.792023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningChoosingproperlossMini-batchNewactivationfunctionAdaptiveLearningRateMomentum802023/9/3HardtogetthepowerofDeep…Deeperusuallydoesnotimplybetter.ResultsonTrainingData812023/9/3Demo822023/9/3VanishingGradientProblemLargergradientsAlmostrandomAlreadyconvergebasedonrandom!?LearnveryslowLearnveryfast…………………………………………y1y2yMSmallergradients832023/9/3VanishingGradientProblem…………………………………………

……

Intuitivewaytocomputethederivatives…

SmallergradientsLargeinputSmalloutput842023/9/3HardtogetthepowerofDeep…In2006,peopleusedRBMpre-training.In2015,peopleuseReLU.852023/9/3ReLURectifiedLinearUnit(ReLU)Reason:1.Fasttocompute2.Biologicalreason3.Infinitesigmoidwithdifferentbiases4.Vanishinggradientproblem

[XavierGlorot,AISTATS’11][AndrewL.Maas,ICML’13][KaimingHe,arXiv’15]862023/9/3ReLU0000

872023/9/3ReLUAThinnerlinearnetworkDonothavesmallergradients

882023/9/3Demo892023/9/3ReLU-variant

αalsolearnedbygradientdescent902023/9/3MaxoutLearnableactivationfunction[IanJ.Goodfellow,ICML’13]MaxInputMax+

+

+

+

MaxMax+

+

+

+

ReLUisaspecialcasesofMaxoutYoucanhavemorethan2elementsinagroup.neuron912023/9/3MaxoutLearnableactivationfunction[IanJ.Goodfellow,ICML’13]ActivationfunctioninmaxoutnetworkcanbeanypiecewiselinearconvexfunctionHowmanypiecesdependingonhowmanyelementsinagroupReLUisaspecialcasesofMaxout2elementsinagroup3elementsinagroup922023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningChoosingproperlossMini-batchNewactivationfunctionAdaptiveLearningRateMomentum932023/9/3

LearningRatesIflearningrateistoolargeTotallossmaynotdecreaseaftereachupdateSetthelearningrateηcarefully942023/9/3

LearningRatesIflearningrateistoolargeSetthelearningrateηcarefullyIflearningrateistoosmallTrainingwouldbetooslowTotallossmaynotdecreaseaftereachupdate952023/9/3LearningRates

962023/9/3AdagradParameterdependentlearningrate

constant

Summationofthesquareofthepreviousderivatives

Original:Adagrad:972023/9/3Adagradg0g1……0.10.2……g0g1……20.010.0……Observation:1.Learningrateissmallerandsmallerforallparameters2.Smallerderivatives,largerlearningrate,andviceversa

Why?

Learningrate:Learningrate:

982023/9/3SmallerDerivativesLargerLearningRate2.Smallerderivatives,largerlearningrate,andviceversaWhy?SmallerLearningRateLargerderivatives992023/9/3Notthewholestory……Adagrad[JohnDuchi,JMLR’11]RMSprop/watch?v=O3sxAc4hxZUAdadelta[MatthewD.Zeiler,arXiv’12]“Nomorepeskylearningrates”[TomSchaul,arXiv’12]AdaSecant[CaglarGulcehre,arXiv’14]Adam

[DiederikP.Kingma,ICLR’15]Nadam

/proj2015/054_report.pdf

1002023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningChoosingproperlossMini-batchNewactivationfunctionAdaptiveLearningRateMomentum1012023/9/3Hardtofind

optimalnetworkparametersTotalLossThevalueofanetworkparameterwVeryslowattheplateauStuckatlocalminima

Stuckatsaddlepoint

1022023/9/3Inphysicalworld

……MomentumHowaboutputthisphenomenoningradientdescent?1032023/9/3Movement=Negativeof𝜕𝐿∕𝜕𝑤+MomentumMomentumcost𝜕𝐿∕𝜕𝑤=0Stillnotguaranteereachingglobalminima,butgivesomehope……

MomentumRealMovement1042023/9/3AdamRMSProp(AdvancedAdagrad)+Momentum1052023/9/3Demo1062023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningEarlyStoppingRegularizationDropoutNetworkStructure1072023/9/3PanaceaforOverfittingHavemoretrainingdataCreatemoretrainingdata(?)OriginalTrainingData:CreatedTrainingData:Shift15。Handwritingrecognition:1082023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningEarlyStoppingRegularizationDropoutNetworkStructure1092023/9/3DropoutTraining:EachtimebeforeupdatingtheparametersEachneuronhasp%todropout1102023/9/3DropoutTraining:EachtimebeforeupdatingtheparametersEachneuronhasp%todropoutUsingthenewnetworkfortrainingThestructureofthenetworkischanged.Thinner!Foreachmini-batch,weresamplethedropoutneurons1112023/9/3DropoutTesting:NodropoutIfthedropoutrateattrainingisp%,alltheweightstimes1-p%

1122023/9/3Dropout-IntuitiveReasonTrainingTestingDropout(腳上綁重物)Nodropout(拿下重物後就變很強)1132023/9/3Dropout-IntuitiveReasonWhytheweightsshouldmultiply(1-p)%(dropoutrate)whentesting?TrainingofDropoutTestingofDropout

Assumedropoutrateis50%

NodropoutWeightsfromtraining

Weightsmultiply1-p%1142023/9/3Dropoutisakindofensemble.EnsembleNetwork1Network2Network3Network4TrainabunchofnetworkswithdifferentstructuresTrainingSetSet

1Set2Set3Set41152023/9/3Dropoutisakindofensemble.Ensembley1Network1Network2Network3Network4Testingdataxy2y3y4average1162023/9/3Dropoutisakindofensemble.TrainingofDropoutminibatch1……Usingonemini-batchtotrainonenetworkSomeparametersinthenetworkaresharedminibatch2minibatch3minibatch4Mneurons2Mpossiblenetworks1172023/9/3Dropoutisakindofensemble.testingdataxTestingofDropout……averagey1y2y3Alltheweightsmultiply1-p%≈y?????1182023/9/3MoreaboutdropoutMorereferencefordropout[NitishSrivastava,JMLR’14][PierreBaldi,NIPS’13][GeoffreyE.Hinton,arXiv’12]DropoutworksbetterwithMaxout[IanJ.Goodfellow,ICML’13]Dropconnect[LiWan,ICML’13]DropoutdeleteneuronsDropconnectdeletestheconnectionbetweenneuronsAnnealeddropout[S.J.Rennie,SLT’14]DropoutratedecreasesbyepochsStandout[J.Ba,NISP’13]Eachneuralhasdifferentdropoutrate1192023/9/3Demoy1y2y10……………………Softmax500500model.add(dropout(0.8))model.add(dropout(0.8))1202023/9/3Demo1212023/9/3GoodResultsonTestingData?GoodResultsonTrainingData?YESYESRecipeofDeepLearningEarlyStoppingRegularizationDropoutNetworkStructureCNNisaverygoodexample!(nextlecture)1222023/9/3ConcludingRemarks123

2RecipeofDeepLearningNeuralNetworkGoodResultsonTestingData?GoodResultsonTrainingData?Step1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionYESYESNONO1242023/9/3LectureII:

VariantsofNeuralNetworks125

2VariantsofNeuralNetworksConvolutionalNeuralNetwork(CNN)RecurrentNeuralNetwork(RNN)Widelyusedinimageprocessing1262023/9/3WhyCNNforImage?Canthenetworkbesimplifiedbyconsideringthepropertiesofimages?……………………………………ThemostbasicclassifiersUse1stlayerasmoduletobuildclassifiersUse2ndlayerasmodule……[Zeiler,M.D.,ECCV2014]Representedaspixels1272023/9/3WhyCNNforImageSomepatternsaremuchsmallerthanthewholeimageAneurondoesnothavetoseethewholeimagetodiscoverthepattern.“beak”

detectorConnectingtosmallregionwithlessparameters1282023/9/3WhyCNNforImageThesamepatternsappearindifferentregions.“upper-leftbeak”

detector“middlebeak”

detectorTheycanusethesamesetofparameters.Doalmostthesamething1292023/9/3WhyCNNforImageSubsampling

thepixelswillnotchangetheobjectsubsamplingbirdbirdWecansubsamplethepixelstomakeimagesmallerLessparametersforthenetworktoprocesstheimage1302023/9/3Step1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionThreeStepsforDeepLearningDeepLearningissosimple……ConvolutionalNeuralNetwork1312023/9/3ThewholeCNNFullyConnectedFeedforwardnetworkcatdog……ConvolutionMaxPoolingConvolutionMaxPoolingFlattenCanrepeatmanytimes1322023/9/3ThewholeCNNConvolutionMaxPoolingConvolutionMaxPoolingFlattenCanrepeatmanytimesSomepatternsaremuchsmallerthanthewholeimageThesamepatternsappearindifferentregions.Subsampling

thepixelswillnotchangetheobjectProperty1Property2Property31332023/9/3ThewholeCNNFullyConnectedFeedforwardnetworkcatdog……ConvolutionMaxPoolingConvolutionMaxPoolingFlattenCanrepeatmanytimes1342023/9/3CNN–Convolution1000010100100011001000100100100010106x6image1-1-1-11-1-1-11Filter1-11-1-11-1-11-1Filter2……Thosearethenetworkparameterstobelearned.MatrixMatrixEachfilterdetectsasmallpattern(3x3).Property11352023/9/3CNN–Convolution1000010100100011001000100100100010106x6image1-1-1-11-1-1-11Filter13-1stride=11362023/9/3CNN–Convolution1000010100100011001000100100100010106x6image1-1-1-11-1-1-11Filter13-3Ifstride=2Wesetstride=1below1372023/9/3CNN–Convolution1000010100100011001000100100100010106x6image1-1-1-11-1-1-11Filter13-1-3-1-310-3-3-3013-2-2-1stride=1Property21382023/9/3CNN–Convolution1000010100100011001000100100100010106x6image3-1-3-1-310-3-3-3013-2-2-1-11-1-11-1-11-1Filter2-1-1-1-1-1-1-21-1-1-21-10-43Dothesameprocessforeveryfilterstride=14x4imageFeatureMap1392023/9/3CNN–ZeroPadding1000010100100011001000100100100010106x6image1-1-1-11-1-1-11Filter1Youwillgetanother6x6imagesinthisway0Zeropadding0000000001402023/9/3CNN–Colorfulimage1000010100100011001000100100100010101000010100100011001000100100100010101000010100100011001000100100100010101-1-1-11-1-1-11Filter1-11-1-11-1-11-1Filter21-1-1-11-1-1-111-1-1-11-1-1-11-11-1-11-1-11-1-11-1-11-1-11-1Colorfulimage1412023/9/3100001010010001100100010010010001010imageconvolution-11-1-11-1-11-11-1-1-11-1-1-11…………100001010010001100100010010010001010Convolutionv.s.FullyConnectedFully-connected1422023/9/31000010100100011001000100100100010106x6image1-1-1-11-1-1-11Filter11:2:3:…7:8:9:…13:14:15:…Onlyconnectto9input,notfullyconnected4:10:16:1000010000113Lessparameters!1432023/9/31000010100100011001000100100100010101-1-1-11-1-1-11Filter11:2:3:…7:8:9:…13:14:15:…4:10:16:1000010000113-1Sharedweights6x6imageLessparameters!Evenlessparameters!1442023/9/3ThewholeCNNFullyConnectedFeedforwardnetworkcatdog……ConvolutionMaxPoolingConvolutionMaxPoolingFlattenCanrepeatmanytimes1452023/9/3CNN–MaxPooling3-1-3-1-310-3-3-3013-2-2-1-11-1-11-1-11-1Filter2-1-1-1-1-1-1-21-1-1-21-10-431-1-1-11-1-1-11Filter11462023/9/3CNN–MaxPooling1000010100100011001000100100100010106x6image3013-11302x2imageEachfilterisachannelNewimagebutsmallerConvMaxPooling1472023/9/3ThewholeCNNConvolutionMaxPoolingConvolutionMaxPoolingCanrepeatmanytimesAnewimageThenumberofthechannelisthenumberoffiltersSmallerthantheoriginalimage3013-11301482023/9/3ThewholeCNNFullyConnectedFeedforwardnetworkcatdog……ConvolutionMaxPoolingConvolutionMaxPoolingFlattenAnewimageAnewimage1492023/9/3Flatten3013-1130Flatten3013-1103FullyConnectedFeedforwardnetwork1502023/9/3ConvolutionalNeuralNetworkLearning:Nothingspecial,justgradientdescent……CNN“monkey”“cat”“dog”Convolution,MaxPooling,fullyconnected100……targetStep1:defineasetoffunctionStep2:goodnessoffunctionStep3:pickthebestfunctionConvolutionalNeuralNetwork1512023/9/3Onlymodifiedthenetworkstructureandinputformat(vector->3-Dtensor)CNNinKerasConvolutionMaxPoolingConvolutionMaxPoolinginput1-1-1-11-1-1-11-11-1-11-1-11-1Thereare25

3x3filters.……Input_shape=(1,28,28)1:black/weight,3:RGB28x28pixels3-1-3131522023/9/3Onlymodifiedthenetworkstructureandinputformat(vector->3-Dtensor)CNNinKerasConvolutionMaxPoolingConvolutionMaxPoolinginput1x28x2825x26x2625x13x1350x11x1150x5x5Howmanyparametersforeachfilter?Howmanyparametersforeachfilter?92251532023/9/3Onlymodifiedthenetworkstructureandinputformat(vector->3-Dtensor)CNNinKerasConvolutionMaxPoolingConvolutionMaxPoolinginput1x28x2825

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论