辽宁省锦州市第五中学高二数学文上学期摸底试题含解析_第1页
辽宁省锦州市第五中学高二数学文上学期摸底试题含解析_第2页
辽宁省锦州市第五中学高二数学文上学期摸底试题含解析_第3页
辽宁省锦州市第五中学高二数学文上学期摸底试题含解析_第4页
辽宁省锦州市第五中学高二数学文上学期摸底试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省锦州市第五中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个几何体的正视图和侧视图如图所示,则这个几何体的俯视图不可能是

(

)参考答案:D2.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是A.

B.

C.

D.参考答案:D3.若x>0,则x++2有()A.最小值6 B.最小值8 C.最大值4 D.最大值3参考答案:B【考点】基本不等式.【分析】利用基本不等式的性质即可得出.【解答】解:∵x>0,则x++2≥2+2=8,当且仅当x=3时取等号.故选:B.4.已知,则是的(

)A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:A略5.命题:“若”的逆否命题是

)A、若

B、若C、若

D、若参考答案:D略6.已知点为抛物线上一点,那么点P到抛物线准线的距离是(

)A.2

B.

C.3

D.4参考答案:C7.如图,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=100米,点C位于BD上,则山高AB等于()A.100米 B.50米 C.50米 D.50(+1)米参考答案:D【考点】解三角形的实际应用.【分析】设AB=xm,根据俯角的定义得到∠MAC=45°,∠MAD=30°,由平行线的性质得到∠D=30°,∠ACB=45°,再根据等腰三角形的性质得BC=AB=x,根据含30度的直角三角形三边的关系得DB=AB,即100+x=x,解出x即可.【解答】解:设AB=xm,则由题意,∠D=30°,∠ACB=45°,在Rt△ABC中,BC=AB=x,在Rt△ADB中,DB=CD+BC=100+x,∴DB=AB,即100+x=x,解得x=50(+1)m.∴山AB的高度为50(+1)米.故选:D.8.设等差数列{an}的前n项和为Sn,若a1=﹣11,a4+a6=﹣6,则当Sn取最小值时,n等于(

)A.6 B.7 C.8 D.9参考答案:A考点:等差数列的前n项和.专题:等差数列与等比数列.分析:条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.解答:解:设该数列的公差为d,则a4+a6=2a1+8d=2×(﹣11)+8d=﹣6,解得d=2,所以,所以当n=6时,Sn取最小值.故选A.点评:本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力9.已知F1、F2是双曲线C:(a>0,b>0)的左、右焦点,过点F1且垂直于x轴的直线交双曲线C于P、Q两点,若△F2PQ为正三角形,则双曲线C的离心率e的值为()A. B.2 C.3 D.参考答案:A【考点】双曲线的简单性质.【分析】利用直角三角形中含30°角所对的边的性质及其双曲线的定义、勾股定理即可得到a,c的关系.【解答】解:由△F2PQ是正三角形,则在Rt△PF1F2中,有∠PF2F1=30°,∴|PF1|=|PF2|,又|PF2|﹣|PF1|=2a.∴|PF2|=4a,|PF1|=2a,又|F1F2|=2c,又在Rt△PF1F2中,|PF1|2+|F1F2|2=|PF2|2,得到4a2+4c2=16a2,∴=∴e=.故选A.10.若等于

) A.2 B.-2 C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知,若,则a=____________;参考答案:因为,所以,又因为,所以。12.已知集合是满足下列性质的函数的全体:存在非零常数k,对定义域中的任意,等式=+恒成立.现有两个函数,,则函数、与集合的关系为

参考答案:略13.若有极值,则的取值范围是

.参考答案:略14.做一个无盖的圆柱形水桶,若要使体积是27,且用料最省,则圆柱的底面半径为

参考答案:3略15.复数的虚部为

.参考答案:1略16.在△ABC中,∠A的角平分线交BC于点D,且AD=1,边BC上的高AH=,△ABD的面积是△ACD的面积的2倍,则BC=.参考答案:【考点】三角形中的几何计算.【分析】由题意,AB:AC=BD:DC=2:1,DH=,设DC=x,则BD=2x,可得+(2x+)2=4[+(x﹣)2],求出x=,即可得出结论.【解答】解:由题意,AB:AC=BD:DC=2:1,DH=设DC=x,则BD=2x,∴+(2x+)2=4[+(x﹣)2],∴x=,∴BC=3x=.故答案为.【点评】本题考查三角形角平分线的性质,考查勾股定理的运用,属于中档题.17.抛物线的准线方程是y=﹣1,则抛物线的标准方程是.参考答案:x2=4y【考点】抛物线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】根据准线方程为y=﹣1,可知抛物线的焦点在y轴的正半轴,再设抛物线的标准形式为x2=2py,根据准线方程求出p的值,代入即可得到答案.【解答】解:由题意可知抛物线的焦点在y轴的正半轴,设抛物线标准方程为:x2=2py(p>0),∵抛物线的准线方程为y=﹣1,∴=1,∴p=2,∴抛物线的标准方程为:x2=4y.故答案为:x2=4y.【点评】本题主要考查抛物线的标准方程、抛物线的简单性质.属基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x﹣4y﹣12=0.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.参考答案:【考点】6H:利用导数研究曲线上某点切线方程;62:导数的几何意义;IG:直线的一般式方程.【分析】(1)已知曲线上的点,并且知道过此点的切线方程,容易求出斜率,又知点(2,f(2))在曲线上,利用方程联立解出a,b(2)可以设P(x0,y0)为曲线上任一点,得到切线方程,再利用切线方程分别与直线x=0和直线y=x联立,得到交点坐标,接着利用三角形面积公式即可.【解答】解析:(1)方程7x﹣4y﹣12=0可化为,当x=2时,,又,于是,解得,故.(2)设P(x0,y0)为曲线上任一点,由知曲线在点P(x0,y0)处的切线方程为,即令x=0,得,从而得切线与直线x=0的交点坐标为;令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0);所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形面积为定值,此定值为6.19.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点.(1)证明:PA//平面BGD;(2)求直线DG与平面PAC所成的角的正切值.参考答案:解:(1)证明:设点O为AC、BD的交点,由AB=BC,AD=CD,得BD是线段AC的中垂线,所以O为AC的中点,连结OG又因为G为PC的中点,所以,又因为所以PA//面BGD(2),,又由(1)知,所以与面所成的角是.由(1)知:,,,所以,在直角中,,在直角中,,所以直线与面所成的角的正切值是略20.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。(1)若设休闲区的长米,求公园ABCD所占面积S关于的函数的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?参考答案:解、⑴由,知⑵当且仅当时取等号∴要使公园所占面积最小,休闲区A1B1C1D1的长为100米、宽为40米.21.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明:数列{bn}是等比数列;(2)求数列{an}的通项公式.参考答案:略22.在直角坐标系中,点到两点,的距离之和等于,设点的轨迹为。

(1)求曲线的方程;

(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论